Back to Search Start Over

Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity

Authors :
Viktor K. Jirsa
Jean-Philippe Ranjeva
Maxime Guye
Pierre Besson
Christian Bénar
Jonathan Wirsich
Ben Ridley
Centre de résonance magnétique biologique et médicale (CRMBM)
Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)
Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - APHM] (CEMEREM)
Hôpital de la Timone [CHU - APHM] (TIMONE)-Centre de résonance magnétique biologique et médicale (CRMBM)
Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)
Institut de Neurosciences des Systèmes (INS)
Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Centre d'Exploration Métabolique par Résonance Magnétique [Hôpital de la Timone - AP-HM] (CEMEREM)
Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Assistance Publique - Hôpitaux de Marseille (APHM)-Centre National de la Recherche Scientifique (CNRS)- Hôpital de la Timone [CHU - APHM] (TIMONE)
Source :
NeuroImage, NeuroImage, 2017, ⟨10.1016/j.neuroimage.2017.08.055⟩, NeuroImage, Elsevier, 2017, ⟨10.1016/j.neuroimage.2017.08.055⟩
Publication Year :
2017

Abstract

International audience; While averaged dynamics of brain function are known to estimate the underlying structure, the exact relationship between large-scale function and structure remains an unsolved issue in network neuroscience. These complex functional dynamics, measured by EEG and fMRI, are thought to arise from a shared underlying structural architecture, which can be measured by diffusion MRI (dMRI). While simulation and data transformation (e.g. graph theory measures) have been proposed to refine the understanding of the underlying function-structure relationship, the potential complementary and/or independent contribution of EEG and fMRI to this relationship is still poorly understood. As such, we explored this relationship by analyzing the function-structure correlation in fourteen healthy subjects with simultaneous resting-state EEG-fMRI and dMRI acquisitions. We show that the combination of EEG and fMRI connectivity better explains dMRI connectivity and that this represents a genuine model improvement over fMRI-only models for both group-averaged connectivity matrices and at the individual level. Furthermore, this model improves the prediction within each resting-state network. The best model fit to underlying structure is mediated by fMRI and EEG-δ connectivity in combination with Euclidean distance and interhemispheric connectivity with more local contributions of EEG-γ at the scale of resting state networks. This highlights that the factors mediating the relationship between functional and structural metrics of connectivity are context and scale dependent, influenced by topological, geometric and architectural features. It also suggests that fMRI studies employing simultaneous EEG measures may characterize additional and essential parts of the underlying neuronal activity of the resting-state, which might be of special interest for both clinical studies and the investigation of resting-state dynamics.

Details

ISSN :
10959572 and 10538119
Volume :
161
Database :
OpenAIRE
Journal :
NeuroImage
Accession number :
edsair.doi.dedup.....a0ea36475fc057bcda1bb737a4bb08d0
Full Text :
https://doi.org/10.1016/j.neuroimage.2017.08.055⟩