Back to Search Start Over

Topology Preserving Simplification of 2D Non-Manifold Meshes with Embedded Structures

Authors :
Paul Le Texier
Georges-Pierre Bonneau
Fabien Vivodtzev
Laboratoire de Modélisation et Calcul (LMC - IMAG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
Virtual environments for animation and image synthesis of natural objects (EVASION)
Laboratoire d'informatique GRAphique, VIsion et Robotique de Grenoble (GRAVIR - IMAG)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Centre d'études scientifiques et techniques d'Aquitaine (CESTA)
Direction des Applications Militaires (DAM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes
Source :
The Visual Computer, The Visual Computer, Springer Verlag, 2005, 21 (8-10), pp.679-688. ⟨10.1007/s00371-005-0334-y⟩, The Visual Computer, 2005, 21 (8-10), pp.679-688. ⟨10.1007/s00371-005-0334-y⟩
Publication Year :
2005
Publisher :
HAL CCSD, 2005.

Abstract

International audience; Mesh simplification has received tremendous attention over the past years. Most of the previous works deal with a proper choice of error measures to guide the simplification. Preserving the topological characteristics of the mesh and possibly of data attached to the mesh is a more recent topic, the present paper is about.We introduce a new topology preserving simplification algorithm for triangular meshes, possibly non-manifold, with embedded polylines. In this context embedded means that the edges of the polylines are also edges of the mesh. The paper introduces a robust test to detect if the collapse of an edge in the mesh modifies either the topology of the mesh or the topology of the embedded polylines. This validity test is derived using combinatorial topology results. More precisely we define a so-called extended complex from the input mesh and the embedded polylines. We show that if an edge collapse of the mesh preserves the topology of this extended complex, then it also preserves both the topology of the mesh and the embedded polylines. Our validity test can be used for any 2-complex mesh, including non-manifold triangular meshes. It can be combined with any previously introduced error measure. Implementation of this validity test is described. We demonstrate the power and versatility of our method with scientific data sets from neuroscience, geology and CAD/CAM models from mechanical engineering.

Details

Language :
English
ISSN :
01782789
Database :
OpenAIRE
Journal :
The Visual Computer, The Visual Computer, Springer Verlag, 2005, 21 (8-10), pp.679-688. ⟨10.1007/s00371-005-0334-y⟩, The Visual Computer, 2005, 21 (8-10), pp.679-688. ⟨10.1007/s00371-005-0334-y⟩
Accession number :
edsair.doi.dedup.....a0dbe1a1ace8c897644e472bb847c643