Back to Search Start Over

Tumor-associated E-cadherin mutations do not induce Wnt target gene expression, but affect E-cadherin repressors

Authors :
Jan Budczies
Heidi Hahn
Holger Laux
Michaela Blöchinger
Raju Tomer
Udo Schnitzbauer
Friederike Eckardt-Schupp
Heinz Höfler
Michael T. Mader
Roland Kappler
Karl-Friedrich Becker
Jan Smida
Source :
Laboratory investigation; a journal of technical methods and pathology. 84(10)
Publication Year :
2004

Abstract

E-cadherin is a cell-cell adhesion molecule and tumor invasion suppressor gene that is frequently altered in human cancers. It interacts through its cytoplasmic domain with beta-catenin which in turn interacts with the Wnt (wingless) signaling pathway. We have compared the effects of different tumor-derived E-cadherin variants with those of normal E-cadherin on Wnt signaling and on genes involved in epithelial mesenchymal transition. We established an in-house cDNA microarray composed of 1105 different, sequence verified cDNA probes corresponding to 899 unique genes that represent the majority of genes known to be involved in cadherin-dependent cell adhesion and signaling ('Adhesion/Signaling Array'). The expression signatures of E-cadherin-negative MDA-MB-435S cancer cells transfected with E-cadherin variants (in frame deletions of exon 8 or 9, D8 or D9, respectively, or a point mutation in exon 8 (D370A)) were compared to that of wild-type E-cadherin (WT) transfected cells. From the differentially expressed genes, we selected 38 that we subsequently analyzed by quantitative real-time RT-PCR and/or Northern Blot. A total of 92% of these were confirmed as differentially expressed. Most of these genes encode proteins of the cytoskeleton, cadherins/integrins, oncogenes and matrix metalloproteases. No significant expression differences of genes downstream of the Wnt-pathway were found, except in E-cadherin D8 transfected cells where upregulation of three Tcf/Lef-transcribed genes was seen. One possible reason for the lack of expression differences of the Tcf/Lef-regulated genes is upregulation of SFRP1 and SFRP3; both of which are competitive inhibitors of the Wnt proteins. Interestingly, known E-cadherin transcriptional repressors, such as SLUG (SNAI2), SIP1 (ZEB2), TWIST1, SNAIL (SNAI1) and ZEB1 (TCF8), but not E12/E47 (TCF3), had a lack of upregulation in cells expressing mutated E-cadherin compared to WT. In conclusion, E-cadherin mutations have no influence on expression of genes involved in Wnt-signaling, but they may promote their own expression by blocking upregulation of E-cadherin repressors.

Details

ISSN :
00236837
Volume :
84
Issue :
10
Database :
OpenAIRE
Journal :
Laboratory investigation; a journal of technical methods and pathology
Accession number :
edsair.doi.dedup.....a0db6cf5ea61bec6a38d6cde6423bd6b