Back to Search Start Over

Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair

Authors :
Linhong Li
Ezekiel Bello
Harry L. Malech
Xiaolin Wu
Narda Theobald
Taylor Liu
Ronald J. Meis
Matthew H. Porteus
Suk See De Ravin
Gary A. Dahl
Julie Brault
Sherry Koontz
Janet Lee
Colin L. Sweeney
Uimook Choi
Mara Pavel-Dinu
Source :
Gene therapy
Publication Year :
2020

Abstract

X-linked chronic granulomatous disease is an immunodeficiency characterized by defective production of microbicidal reactive oxygen species (ROS) by phagocytes. Causative mutations occur throughout the 13 exons and splice sites of the CYBB gene, resulting in loss of gp91phox protein. Here we report gene correction by homology-directed repair in patient hematopoietic stem/progenitor cells (HSPCs) using CRISPR/Cas9 for targeted insertion of CYBB exon 1–13 or 2–13 cDNAs from adeno-associated virus donors at endogenous CYBB exon 1 or exon 2 sites. Targeted insertion of exon 1–13 cDNA did not restore physiologic gp91phox levels, consistent with a requirement for intron 1 in CYBB expression. However, insertion of exon 2–13 cDNA fully restored gp91phox and ROS production upon phagocyte differentiation. Addition of a woodchuck hepatitis virus post-transcriptional regulatory element did not further enhance gp91phox expression in exon 2–13 corrected cells, indicating that retention of intron 1 was sufficient for optimal CYBB expression. Targeted correction was increased ~1.5-fold using i53 mRNA to transiently inhibit non-homologous end joining. Following engraftment in NSG mice, corrected HSPCs generated phagocytes with restored gp91phox and ROS production. Our findings demonstrate the utility of tailoring donor design and targeting strategies to retain regulatory elements needed for optimal expression of the target gene.

Details

ISSN :
14765462
Volume :
28
Issue :
6
Database :
OpenAIRE
Journal :
Gene therapy
Accession number :
edsair.doi.dedup.....a0be7bf9ef8dde53083d0d27a9cd8b58