Back to Search
Start Over
Correction of X-CGD patient HSPCs by targeted CYBB cDNA insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair
- Source :
- Gene therapy
- Publication Year :
- 2020
-
Abstract
- X-linked chronic granulomatous disease is an immunodeficiency characterized by defective production of microbicidal reactive oxygen species (ROS) by phagocytes. Causative mutations occur throughout the 13 exons and splice sites of the CYBB gene, resulting in loss of gp91phox protein. Here we report gene correction by homology-directed repair in patient hematopoietic stem/progenitor cells (HSPCs) using CRISPR/Cas9 for targeted insertion of CYBB exon 1–13 or 2–13 cDNAs from adeno-associated virus donors at endogenous CYBB exon 1 or exon 2 sites. Targeted insertion of exon 1–13 cDNA did not restore physiologic gp91phox levels, consistent with a requirement for intron 1 in CYBB expression. However, insertion of exon 2–13 cDNA fully restored gp91phox and ROS production upon phagocyte differentiation. Addition of a woodchuck hepatitis virus post-transcriptional regulatory element did not further enhance gp91phox expression in exon 2–13 corrected cells, indicating that retention of intron 1 was sufficient for optimal CYBB expression. Targeted correction was increased ~1.5-fold using i53 mRNA to transiently inhibit non-homologous end joining. Following engraftment in NSG mice, corrected HSPCs generated phagocytes with restored gp91phox and ROS production. Our findings demonstrate the utility of tailoring donor design and targeting strategies to retain regulatory elements needed for optimal expression of the target gene.
- Subjects :
- 0301 basic medicine
DNA, Complementary
Biology
Granulomatous Disease, Chronic
Article
Homology directed repair
03 medical and health sciences
Exon
Mice
0302 clinical medicine
Genetics
CRISPR
Animals
Humans
CYBB
Molecular Biology
Gene
Woodchuck hepatitis virus
Intron
NADPH Oxidases
Exons
biology.organism_classification
Hematopoietic Stem Cells
Molecular biology
Non-homologous end joining
030104 developmental biology
030220 oncology & carcinogenesis
NADPH Oxidase 2
Molecular Medicine
CRISPR-Cas Systems
Subjects
Details
- ISSN :
- 14765462
- Volume :
- 28
- Issue :
- 6
- Database :
- OpenAIRE
- Journal :
- Gene therapy
- Accession number :
- edsair.doi.dedup.....a0be7bf9ef8dde53083d0d27a9cd8b58