Back to Search Start Over

Semiquantal molecular dynamics simulations of hydrogen-bond dynamics in liquid water using spherical gaussian wave packets

Authors :
Kim Hyeon-Deuk
Junichi Ono
Koji Ando
Source :
International Journal of Quantum Chemistry. 113(3):356-365
Publication Year :
2013
Publisher :
Wiley-Blackwell, 2013.

Abstract

A semiquantal (SQ) molecular dynamics (MD) simulation method using spherical Gaussian wave packets (WPs) is applied to a microscopic analysis of hydrogen-bond (H-bond) exchange dynamics in liquid water. We focus on the molecular jump mechanism of H-bond reorientation dynamics proposed from a classical MD simulation by Laage and Hynes (Science 2006, 311, 832). As a notable quantum effect, broadenings of both the oxygen and hydrogen WPs of jumping water are observed associated with the H-bond switching events. Nonetheless, quantum effects on averaged trajectories of structural parameters measured with respect to the WP centers are rather minor. A 1/f fluctuation of local H-bond number is observed in both SQ and classical simulations. This is obtained straightforwardly from the real-time trajectories, in contrast with the originally found 1/f fluctuation (Sasai et al., J. Chem. Phys. 1992, 96, 3045) of the total potential energies collected at quenched inherent structures. The quantum effects are found to accelerate the relaxation of H-bond number fluctuation, which is reflected in the region near the lower bound of the 1/f behavior in the power spectra. New developments in the implementation of SQMD simulations including all atoms are also described. © 2012 Wiley Periodicals, Inc.

Details

Language :
English
ISSN :
00207608
Volume :
113
Issue :
3
Database :
OpenAIRE
Journal :
International Journal of Quantum Chemistry
Accession number :
edsair.doi.dedup.....a0a84f4dde377a9a3458fe6f0f65515c