Back to Search
Start Over
Equivariant $K$-homology for hyperbolic reflection groups
- Source :
- The Quarterly Journal of Mathematics, 69(4), 1475-1505. Oxford, England, UK: Oxford University Press (2018).
- Publication Year :
- 2017
-
Abstract
- We compute the equivariant $K$-homology of the classifying space for proper actions, for compact 3-dimensional hyperbolic reflection groups. This coincides with the topological $K$-theory of the reduced $C^\ast$-algebra associated to the group, via the Baum-Connes conjecture. We show that, for any such reflection group, the associated $K$-theory groups are torsion-free. As a result we can promote previous rational computations to integral compu- tations. Our proof relies on a new efficient algebraic criterion for checking torsion-freeness of K-theory groups, which could be applied to many other classes of groups.<br />29 pages (main text and bibliography) plus appendices (28 pages) Minor revisions
- Subjects :
- Pure mathematics
Classifying space
Hyperbolic group
General Mathematics
01 natural sciences
Mathematics - Geometric Topology
Mathematics::K-Theory and Homology
0103 physical sciences
FOS: Mathematics
Algebraic Topology (math.AT)
Mathematics - Algebraic Topology
0101 mathematics
Algebraic number
Reflection group
Mathematics
Conjecture
Group (mathematics)
010102 general mathematics
K-Theory and Homology (math.KT)
Geometric Topology (math.GT)
Reflection (mathematics)
Mathematics - K-Theory and Homology
Equivariant map
Mathematics [G03] [Physical, chemical, mathematical & earth Sciences]
010307 mathematical physics
Mathématiques [G03] [Physique, chimie, mathématiques & sciences de la terre]
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- The Quarterly Journal of Mathematics, 69(4), 1475-1505. Oxford, England, UK: Oxford University Press (2018).
- Accession number :
- edsair.doi.dedup.....a03e99f065c666de9d3aa0e2cb08b702