Back to Search
Start Over
Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors
- Source :
- Peng, Qin; Lu, Shaoying; Shi, Yuxin; Pan, Yijia; Limsakul, Praopim; Chernov, Andrei V; et al.(2018). Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors.. Proceedings of the National Academy of Sciences of the United States of America, 115(50), E11681-E11690. doi: 10.1073/pnas.1811818115. UC San Diego: Retrieved from: http://www.escholarship.org/uc/item/5gb776r2, Proceedings of the National Academy of Sciences of the United States of America, vol 115, iss 50
- Publication Year :
- 2018
- Publisher :
- eScholarship, University of California, 2018.
-
Abstract
- The dramatic reorganization of chromatin during mitosis is perhaps one of the most fundamental of all cell processes. It remains unclear how epigenetic histone modifications, despite their crucial roles in regulating chromatin architectures, are dynamically coordinated with chromatin reorganization in controlling this process. We have developed and characterized biosensors with high sensitivity and specificity based on fluorescence resonance energy transfer (FRET). These biosensors were incorporated into nucleosomes to visualize histone H3 Lys-9 trimethylation (H3K9me3) and histone H3 Ser-10 phosphorylation (H3S10p) simultaneously in the same live cell. We observed an anticorrelated coupling in time between H3K9me3 and H3S10p in a single live cell during mitosis. A transient increase of H3S10p during mitosis is accompanied by a decrease of H3K9me3 that recovers before the restoration of H3S10p upon mitotic exit. We further showed that H3S10p is causatively critical for the decrease of H3K9me3 and the consequent reduction of heterochromatin structure, leading to the subsequent global chromatin reorganization and nuclear envelope dissolution as a cell enters mitosis. These results suggest a tight coupling of H3S10p and H3K9me3 dynamics in the regulation of heterochromatin dissolution before a global chromatin reorganization during mitosis.
- Subjects :
- 0301 basic medicine
Heterochromatin
Green Fluorescent Proteins
Mitosis
Biosensing Techniques
FRET biosensors
Models, Biological
Histones
03 medical and health sciences
Histone H3
0302 clinical medicine
Bacterial Proteins
Models
MD Multidisciplinary
Fluorescence Resonance Energy Transfer
Nucleosome
Humans
Epigenetics
Multidisciplinary
biology
Chemistry
histone modifications
Biological
Chromatin Assembly and Disassembly
Chromatin
Cell biology
Histone Code
Luminescent Proteins
030104 developmental biology
Histone
HEK293 Cells
PNAS Plus
Mitotic exit
030220 oncology & carcinogenesis
biology.protein
chromatin reorganization
Single-Cell Analysis
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Peng, Qin; Lu, Shaoying; Shi, Yuxin; Pan, Yijia; Limsakul, Praopim; Chernov, Andrei V; et al.(2018). Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors.. Proceedings of the National Academy of Sciences of the United States of America, 115(50), E11681-E11690. doi: 10.1073/pnas.1811818115. UC San Diego: Retrieved from: http://www.escholarship.org/uc/item/5gb776r2, Proceedings of the National Academy of Sciences of the United States of America, vol 115, iss 50
- Accession number :
- edsair.doi.dedup.....9ffc710d6a790a3237169e738d29dbba
- Full Text :
- https://doi.org/10.1073/pnas.1811818115.