Back to Search
Start Over
Finding the First Cosmic Explosions. IV. 90 - 140 M$_{\odot}$ Pair-Instability Supernovae
- Publication Year :
- 2014
- Publisher :
- arXiv, 2014.
-
Abstract
- Population III stars that die as pair-instability supernovae are usually thought to fall in the mass range of 140 - 260 M$_{\odot}$. But several lines of work have now shown that rotation can build up the He cores needed to encounter the pair instability at stellar masses as low as 90 $_{\odot}$. Depending on the slope of the initial mass function of Population III stars, there could be 4 - 5 times as many stars from 90 - 140 $_{\odot}$ in the primordial universe than in the usually accepted range. We present numerical simulations of the pair-instability explosions of such stars performed with the MESA, FLASH and RAGE codes. We find that they will be visible to supernova factories such as Pan-STARRS and LSST in the optical out to z $\sim$ 1 - 2 and to JWST and the 30 m-class telescopes in the NIR out to $z \sim$ 7 - 10. Such explosions will thus probe the stellar populations of the first galaxies and cosmic star formation rates in the era of cosmological reionization. These supernovae are also easily distinguished from more massive pair-instability explosions, underscoring the fact that there is far greater variety to the light curves of these events than previously understood.<br />Comment: 12 pages. 8 figures
- Subjects :
- Physics
High Energy Astrophysical Phenomena (astro-ph.HE)
Initial mass function
Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Star formation
Metallicity
Astrophysics::High Energy Astrophysical Phenomena
FOS: Physical sciences
Astronomy and Astrophysics
Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
Galaxy
Stars
Supernova
Space and Planetary Science
Binary star
Astrophysics::Solar and Stellar Astrophysics
Astrophysics::Earth and Planetary Astrophysics
Astrophysics - High Energy Astrophysical Phenomena
Reionization
Astrophysics::Galaxy Astrophysics
Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....9fb0bc2f0fc6f9e6ff14602bfba18472
- Full Text :
- https://doi.org/10.48550/arxiv.1411.5377