Back to Search Start Over

Finding the First Cosmic Explosions. IV. 90 - 140 M$_{\odot}$ Pair-Instability Supernovae

Authors :
Joseph Smidt
Brandon K. Wiggins
Emmanouil Chatzopoulos
Ke-Jung Chen
Daniel J. Whalen
Alexandra Kozyreva
Wesley Even
Publication Year :
2014
Publisher :
arXiv, 2014.

Abstract

Population III stars that die as pair-instability supernovae are usually thought to fall in the mass range of 140 - 260 M$_{\odot}$. But several lines of work have now shown that rotation can build up the He cores needed to encounter the pair instability at stellar masses as low as 90 $_{\odot}$. Depending on the slope of the initial mass function of Population III stars, there could be 4 - 5 times as many stars from 90 - 140 $_{\odot}$ in the primordial universe than in the usually accepted range. We present numerical simulations of the pair-instability explosions of such stars performed with the MESA, FLASH and RAGE codes. We find that they will be visible to supernova factories such as Pan-STARRS and LSST in the optical out to z $\sim$ 1 - 2 and to JWST and the 30 m-class telescopes in the NIR out to $z \sim$ 7 - 10. Such explosions will thus probe the stellar populations of the first galaxies and cosmic star formation rates in the era of cosmological reionization. These supernovae are also easily distinguished from more massive pair-instability explosions, underscoring the fact that there is far greater variety to the light curves of these events than previously understood.<br />Comment: 12 pages. 8 figures

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....9fb0bc2f0fc6f9e6ff14602bfba18472
Full Text :
https://doi.org/10.48550/arxiv.1411.5377