Back to Search Start Over

Avoiding culture shock with the SARS-CoV-2 spike protein

Authors :
Benjamin G. Hale
University of Zurich
Hale, Benjamin G
Source :
eLife, eLife, Vol 10 (2021)
Publication Year :
2021
Publisher :
eLife Sciences Publications, Ltd, 2021.

Abstract

Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein. Previously, we showed that the MBCS facilitates serine protease-mediated entry into human airway cells (Mykytyn et al., 2021). Here, we report that propagating SARS-CoV-2 on the human airway cell line Calu-3 – that expresses serine proteases – prevents cell culture adaptations in the MBCS and directly adjacent to the MBCS (S686G). Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation.

Details

Language :
English
ISSN :
2050084X
Volume :
10
Database :
OpenAIRE
Journal :
eLife
Accession number :
edsair.doi.dedup.....9f8c44bd72778fc03286ccc29f7edbec