Back to Search Start Over

Silver Anchored Polyaniline@Molybdenum Disulfide Nanocomposite (Ag/Pani@MoS2) for Highly Efficient Ammonia and Methanol Sensing under Ambient Conditions: A Mechanistic Approach

Authors :
Bandar Al-Mur
Mohd Omaish Ansari
Source :
Nanomaterials; Volume 13; Issue 5; Pages: 828
Publication Year :
2023
Publisher :
Multidisciplinary Digital Publishing Institute, 2023.

Abstract

We report the synthesis of silver anchored and para toluene sulfonic acid (pTSA) doped polyaniline/molybdenum disulfide nanocomposite (pTSA/Ag-Pani@MoS2) for highly reproducible room temperature detection of ammonia and methanol. Pani@MoS2 was synthesized by in situ polymerization of aniline in the presence of MoS2 nanosheets. The chemical reduction of AgNO3 in the presence of Pani@MoS2 led to the anchoring of Ag to Pani@MoS2 and finally doping with pTSA produced highly conductive pTSA/Ag-Pani@MoS2. Morphological analysis showed Pani-coated MoS2 along with the observation of Ag spheres and tubes well anchored to the surface. Structural characterization by X-ray diffraction and X-ray photon spectroscopy showed peaks corresponding to Pani, MoS2, and Ag. The DC electrical conductivity of annealed Pani was 11.2 and it increased to 14.4 in Pani@MoS2 and finally to 16.1 S/cm with the loading of Ag. The high conductivity of ternary pTSA/Ag-Pani@MoS2 is due to Pani and MoS2 π–π* interactions, conductive Ag, as well as the anionic dopant. The pTSA/Ag-Pani@MoS2 also showed better cyclic and isothermal electrical conductivity retention than Pani and Pani@MoS2, owing to the higher conductivity and stability of its constituents. The ammonia and methanol sensing response of pTSA/Ag-Pani@MoS2 showed better sensitivity and reproducibility than Pani@MoS2 owing to the higher conductivity and surface area of the former. Finally, a sensing mechanism involving chemisorption/desorption and electrical compensation is proposed.

Details

Language :
English
ISSN :
20794991
Database :
OpenAIRE
Journal :
Nanomaterials; Volume 13; Issue 5; Pages: 828
Accession number :
edsair.doi.dedup.....9f5d1b6bba545b5ad2f61e91f0cc4333
Full Text :
https://doi.org/10.3390/nano13050828