Back to Search Start Over

Imaging and controlling electron transport inside a quantum ring

Authors :
A. Cappy
Joël Chevrier
Benoît Hackens
Thierry Ouisse
Frederico Rodrigues Martins
Vincent Bayot
Sylvain Bollaert
Serge Huant
Hermann Sellier
Xavier Wallart
Laboratoire de Spectrométrie Physique (LSP)
Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
Dispositifs Intégrés et Circuits Electroniques Machine Learning Group (DICE - MLG)
Université Catholique de Louvain = Catholic University of Louvain (UCL)
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN)
Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)
Laboratoire d'Etudes des Propriétés Electroniques des Solides (LEPES)
Université Joseph Fourier - Grenoble 1 (UJF)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)
CP
Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG)-Université Joseph Fourier - Grenoble 1 (UJF)
Source :
Nature Physics, Nature Physics, 2006, 2, pp.826. ⟨10.1038/nphys459⟩, Nature Physics, Nature Publishing Group, 2006, 2, pp.826. ⟨10.1038/nphys459⟩
Publication Year :
2006
Publisher :
HAL CCSD, 2006.

Abstract

Traditionally, the understanding of quantum transport, coherent and ballistic1, relies on the measurement of macroscopic properties such as the conductance. While powerful when coupled to statistical theories, this approach cannot provide a detailed image of "how electrons behave down there". Ideally, understanding transport at the nanoscale would require tracking each electron inside the nano-device. Significant progress towards this goal was obtained by combining Scanning Probe Microscopy (SPM) with transport measurements2-7. Some studies even showed signatures of quantum transport in the surrounding of nanostructures4-6. Here, SPM is used to probe electron propagation inside an open quantum ring exhibiting the archetype of electron wave interference phenomena: the Aharonov-Bohm effect8. Conductance maps recorded while scanning the biased tip of a cryogenic atomic force microscope above the quantum ring show that the propagation of electrons, both coherent and ballistic, can be investigated in situ, and even be controlled by tuning the tip potential.<br />Comment: 11 text pages + 3 figures

Details

Language :
English
ISSN :
17452473 and 14764636
Database :
OpenAIRE
Journal :
Nature Physics, Nature Physics, 2006, 2, pp.826. ⟨10.1038/nphys459⟩, Nature Physics, Nature Publishing Group, 2006, 2, pp.826. ⟨10.1038/nphys459⟩
Accession number :
edsair.doi.dedup.....9f11bfaa0fd8de536d72de7129e5b7e6
Full Text :
https://doi.org/10.1038/nphys459⟩