Back to Search
Start Over
Complex geodesics in convex tube domains II
- Source :
- Annali di Matematica Pura ed Applicata (1923 -). 195:1865-1887
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- Complex geodesics are fundamental constructs for complex analysis and as such constitute one of the most vital research objects within this discipline. In this paper, we formulate a rigorous description, expressed in terms of geometric properties of a domain, of all complex geodesics in a convex tube domain in \({\mathbb {C}}^n\) containing no complex affine lines. Next, we illustrate the obtained result by establishing a set of formulas stipulating a necessary condition for extremal mappings with respect to the Lempert function and the Kobayashi–Royden metric in a large class of bounded, pseudoconvex, complete Reinhardt domains: for all of them in \({\mathbb {C}}^2\) and for those in \({\mathbb {C}}^n\) whose logarithmic image is strictly convex in the geometric sense.
- Subjects :
- Geodesic
0102 computer and information sciences
01 natural sciences
Domain (mathematical analysis)
Combinatorics
Complex geodesic
FOS: Mathematics
32F45, 32A07
Complex Variables (math.CV)
tube domain
0101 mathematics
Mathematics
complex geodesic
convex domain
Mathematics - Complex Variables
Mathematics::Complex Variables
Applied Mathematics
Image (category theory)
010102 general mathematics
Function (mathematics)
extremal mapping
010201 computation theory & mathematics
Bounded function
Reinhardt domain
Convex function
Subjects
Details
- ISSN :
- 16181891 and 03733114
- Volume :
- 195
- Database :
- OpenAIRE
- Journal :
- Annali di Matematica Pura ed Applicata (1923 -)
- Accession number :
- edsair.doi.dedup.....9eea0f3bcc2cbfcc9d0619a4166fd661
- Full Text :
- https://doi.org/10.1007/s10231-015-0537-4