Back to Search
Start Over
Strong Commutativity Preserving Skew Derivations in Semiprime Rings
- Source :
- Bulletin of the Malaysian Mathematical Sciences Society. 41:1819-1834
- Publication Year :
- 2016
- Publisher :
- Springer Science and Business Media LLC, 2016.
-
Abstract
- Let R be a semiprime ring of characteristic different from 2, C its extended centroid, Z(R) its center, F and G non-zero skew derivations of R with associated automorphism \(\alpha \) and m, n positive integers such that $$\begin{aligned}{}[F(x),G(y)]_m=[x,y]^n ~\mathrm{for \, all}~x,y \in R. \end{aligned}$$ Then R is commutative.
- Subjects :
- Discrete mathematics
General Mathematics
010102 general mathematics
Center (category theory)
Semiprime ring
Skew
Automorphism
Generalized polynomial identity (GPI)
Prime and semiprime ring
Skew derivations
Strong commutativity preserving
010103 numerical & computational mathematics
0101 mathematics
01 natural sciences
Commutative property
Mathematics
Subjects
Details
- ISSN :
- 21804206 and 01266705
- Volume :
- 41
- Database :
- OpenAIRE
- Journal :
- Bulletin of the Malaysian Mathematical Sciences Society
- Accession number :
- edsair.doi.dedup.....9ee3e2faa176e2cf20f3d4a132480999
- Full Text :
- https://doi.org/10.1007/s40840-016-0429-9