Back to Search Start Over

Prediction uncertainty of environmental change effects on temperate European biodiversity

Authors :
Raphaël De Cock
St. Klotz
Regula Billeter
Jana Verboom
N. Schermann
St. Aviron
M. Roubalova
Tim Diekötter
Petra Šímová
Jacques Baudry
J.P. Maelfait
Paul Arens
Walter K. R. E. van Wingerden
Frederik Hendrickx
Marinus J. M. Smulders
Agnès Schermann-Legionnet
Carsten F. Dormann
Mark Frenzel
R. Hamersky
F. Herzog
Oliver Schweiger
Jaan Liira
Rob Bugter
Walter Durka
J. Dirksen
M. Speelmans
Françoise Burel
T. Schmidt
I. Augenstein
Angela Lausch
Debra Bailey
B.J.H. Koolstra
M. Cerny
Paul Opdam
Martin Zobel
Geert De Blust
D. Le Coeur
R. DeFilippi
Roman Bukacek
Peter J. Edwards
Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ)
Plant Research International (PRI)
Wageningen University and Research [Wageningen] (WUR)
Agroscope FAL Reckenholz (AGROSCOPE)
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)
Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO)
Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut Ecologie et Environnement (INEE)
Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)-Centre National de la Recherche Scientifique (CNRS)
Unité de recherche SAD Armorique (AMORIQUE)
Institut National de la Recherche Agronomique (INRA)
Centre Armoricain de Recherche en Environnement (CAREN)
Institut National de la Recherche Agronomique (INRA)-Université de Rennes 1 (UR1)
Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure Agronomique de Rennes-Université de Rennes 2 (UR2)
Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)
Swiss Federal Institute of Technology (ETH)
Alterra Green World Research (AGWR)
Nature Conservation Authority (NCA)
Nature Conservation Authority
Institute of Forest Ecosystem Research (IFER)
Institute of Foret Ecosystem Research
INBO - Research Institute for Nature and Forest
Research Institute for Nature and Forest (INBO)
INBO
Institute of Integrative Biology (ETH)
Terrestrial Ecology Unit (TEREC) (TEREC)
State University of Ghent
Institut de minéralogie et de physique des milieux condensés (IMPMC)
Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
PaleoEnvironnements et PaleobioSphere (PEPS)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
Institut für Geowissenschaften
Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen
Institute of Geosciences, University of Tübingen
Institute of Botany and Ecology
University of Tartu
GREENVEINS (projet europeen)
Helmholtz Zentrum für Umweltforschung (UFZ)
Wageningen University and Research Centre [Wageningen] (WUR)
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)
INRA SAD Armorique
Research Institute for Nature and Forest
Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon
Eberhard Karls Universität Tübingen
INRA-SAD Armorique
Université de Rennes (UR)-Institut Ecologie et Environnement (INEE)
Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR)
Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)
Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-Ecole Nationale Supérieure Agronomique de Rennes-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Ecology Letters, Ecology Letters, Wiley, 2008, 11 (3), pp.235-244. ⟨10.1111/j.1461-0248.2007.01142.x⟩, Ecology Letters, 2008, 11 (3), pp.235-244. ⟨10.1111/j.1461-0248.2007.01142.x⟩, Ecology Letters 11 (2008) 3, Ecology Letters, 11(3), 235-244
Publication Year :
2008

Abstract

FR2116; International audience; Observed patterns of species richness at landscape scale (gamma diversity) cannot always be attributed to a specific set of explanatory variables, but rather different alternative explanatory statistical models of similar quality may exist. Therefore predictions of the effects of environmental change (such as in climate or land cover) on biodiversity may differ considerably, depending on the chosen set of explanatory variables. Here we use multimodel prediction to evaluate effects of climate, land-use intensity and landscape structure on species richness in each of seven groups of organisms (plants, birds, spiders, wild bees, ground beetles, true bugs and hoverflies) in temperate Europe. We contrast this approach with traditional best-model predictions, which we show, using cross-validation, to have inferior prediction accuracy. Multimodel inference changed the importance of some environmental variables in comparison with the best model, and accordingly gave deviating predictions for environmental change effects. Overall, prediction uncertainty for the multimodel approach was only slightly higher than that of the best model, and absolute changes in predicted species richness were also comparable. Richness predictions varied generally more for the impact of climate change than for land-use change at the coarse scale of our study. Overall, our study indicates that the uncertainty introduced to environmental change predictions through uncertainty in model selection both qualitatively and quantitatively affects species richness projections.

Details

Language :
English
ISSN :
1461023X and 14610248
Volume :
11
Issue :
3
Database :
OpenAIRE
Journal :
Ecology Letters
Accession number :
edsair.doi.dedup.....9ea4169b2bc6d145dfc9ee4c1b420c75
Full Text :
https://doi.org/10.1111/j.1461-0248.2007.01142.x