Cite
Telomere length and chromosomal instability for predicting individual radiosensitivity and risk via machine learning
MLA
Miles J. McKenna, et al. Telomere Length and Chromosomal Instability for Predicting Individual Radiosensitivity and Risk via Machine Learning. Mar. 2020. EBSCOhost, https://doi.org/10.1101/2020.03.27.009043.
APA
Miles J. McKenna, Susan M. Bailey, Aidan M. Lewis, Jared J. Luxton, S.G. Jhavar, Gregory P. Swanson, & Lynn Taylor. (2020). Telomere length and chromosomal instability for predicting individual radiosensitivity and risk via machine learning. https://doi.org/10.1101/2020.03.27.009043
Chicago
Miles J. McKenna, Susan M. Bailey, Aidan M. Lewis, Jared J. Luxton, S.G. Jhavar, Gregory P. Swanson, and Lynn Taylor. 2020. “Telomere Length and Chromosomal Instability for Predicting Individual Radiosensitivity and Risk via Machine Learning,” March. doi:10.1101/2020.03.27.009043.