Back to Search
Start Over
Regulatory Effect of miR497-5p–CCNE1 Axis in Triple-Negative Breast Cancer Cells and Its Predictive Value for Early Diagnosis
- Source :
- Cancer Management and Research
- Publication Year :
- 2021
- Publisher :
- Dove, 2021.
-
Abstract
- Wei-Wei Liu, Wei-Dong Li, Yan-Ju Zhang, Man-Li Zhang Breast Center, Cangzhou People’s Hospital, Cangzhou 061000, Hebei Province, People’s Republic of ChinaCorrespondence: Man-Li ZhangBreast Center, Cangzhou People’s Hospital, Intersection of Chongqing Road and Jilin North Road, Yunhe District, Cangzhou 061000, Hebei Province, People’s Republic of ChinaTel +86-135-6645-8334Email manko8866@126.comObjective: To explore the regulatory role of miR497-5p–CCNE1 axis in triple-negative breast cancer (TNBC) cells and its predictive value for early diagnosis.Methods: Cancer tissue and adjacent tissue samples were collected from 86 patients with TNBC.RT-PCR was used to detect the expression of miR497-5p and CCNE1 (target gene) mRNA, determined by biological prediction in tissue and TNBC cells. ROC was used to analyze the diagnostic value of miR497-5p in TNBC. MTT, invasion, and flow cytometry were used to detect the proliferation, invasion, cycle, apoptosis rate, and expression of related proteins of TNBC cells with overexpression of miR497-5p or knockdown of CCNE1.Results: RT-qPCR results showed that miR497-5p levels were significantly downregulated in TNBC tissue and cells, while CCNE1 expression was significantly upregulated, and miR497-5p expression was negatively correlated with that of CCNE1 (P< 0.001). ROC analysis showed that the AUC of miR497-5p for TNBC was > 0.9, which had better diagnostic value. The cell tests revealed that miR497-5p played a role in tumor inhibition, including inhibiting proliferation and invasion of TNBC cells, blocking the cell cycle, and promoting apoptosis. Bioinformatic prediction and subsequent experiments revealed that CCNE1 was the direct target of miR497-5p. Furthermore, after knocking down the expression of CCNE1 in TNBC cells, the proliferation and invasion of TNBC cells were significantly inhibited, the cell cycle blocked, and the apoptosis rate significantly increased (P< 0.001), and expression of the proapoptosis-related proteins Bax and caspase 3 (cleaved) were upregulated, while expression of the antiapoptosis-related protein BCL2 was downregulated (P< 0.001).Conclusion: miR497-5p inhibited the proliferation and invasion of TNBC cells by targeting CCNE1, blocked the cell cycle and promoted the apoptosis of TNBC cells, and had better diagnostic value for TNBC. miR497-5p can be used as a new potential target for the treatment of TNBC.Keywords: miR497-5p, TNBC, CCNE1, proliferation, invasion, apoptosis
- Subjects :
- 0301 basic medicine
proliferation
Cell
Caspase 3
Biology
Flow cytometry
03 medical and health sciences
0302 clinical medicine
medicine
Triple-negative breast cancer
Original Research
Gene knockdown
medicine.diagnostic_test
apoptosis
Cancer
miR497-5p
Cell cycle
medicine.disease
CCNE1
invasion
030104 developmental biology
medicine.anatomical_structure
Oncology
Cancer Management and Research
Apoptosis
030220 oncology & carcinogenesis
Cancer research
TNBC
Subjects
Details
- Language :
- English
- ISSN :
- 11791322
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- Cancer Management and Research
- Accession number :
- edsair.doi.dedup.....9e4f34bb15f6ca884c84ef77b306d221