Back to Search Start Over

A technique of flux reconstruction at the interfaces of nonconforming grids for aeroacoustic simulations

Authors :
Christophe Bogey
Hugues Deniau
Sophie Le Bras
CERFACS [Toulouse]
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
CERFACS
Laboratoire de Mecanique des Fluides et d'Acoustique (LMFA)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Source :
International Journal for Numerical Methods in Fluids, International Journal for Numerical Methods in Fluids, Wiley, 2019, 91 (12), pp.587-614. ⟨10.1002/fld.4767⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; A flux reconstruction technique is presented to perform aeroacoustic computations using implicit high-order spatial schemes on multiblock structured grids with nonconforming interfaces. The use of such grids, with mesh spacing discontinuities across the block interfaces, eases local mesh refinements, simplifies the mesh generation process, and thus facilitates the computation of turbulent flows. In this work, the spatial discretization consists of sixth-order finite-volume implicit schemes with low-dispersion and low-dissipation properties. The flux reconstruction is based on the combination of noncentered schemes with local interpolations to define ghost cells and compute flux values at the grid interfaces. The flow variables in the ghost cells are calculated from the flow field in the grid cells using a meshless interpolation with radial basis functions. In this study, the flux reconstruction is applied to both plane and curved nonconforming interfaces. The performance of the method is first evaluated by performing two-dimensional simulations of the propagation of an acoustic pulse and of the convection of a vortex on Cartesian and wavy grids. No significant spurious noise is produced at the grid interfaces. The applicability of the flux reconstruction to a three-dimensional computation is then demonstrated by simulating a jet at a Mach number of 0.9 and a diameter-based Reynolds number of 4 × 10 5 on a Cartesian grid. The nonconforming grid interface located downstream of the jet potential core does not appreciably affect the flow development and the jet sound field, while reducing the number of mesh points by a factor of approximately two.

Details

Language :
English
ISSN :
02712091 and 10970363
Database :
OpenAIRE
Journal :
International Journal for Numerical Methods in Fluids, International Journal for Numerical Methods in Fluids, Wiley, 2019, 91 (12), pp.587-614. ⟨10.1002/fld.4767⟩
Accession number :
edsair.doi.dedup.....9e4ba8b7777dbbbecdc8d63e3f0caa47
Full Text :
https://doi.org/10.1002/fld.4767⟩