Back to Search Start Over

Speed of rapid serial visual presentation of pictures, numbers and words affects event-related potential-based detection accuracy

Authors :
Phillippa Payne
Fabien Lotte
Damien Coyle
Liam Maguire
Stephanie Lees
Paul McCullagh
University of Ulster
Popular interaction with 3d content (Potioc)
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Source :
IEEE Transactions on Neural Systems and Rehabilitation Engineering, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Institute of Electrical and Electronics Engineers, 2019, ⟨10.1109/TNSRE.2019.2953975⟩, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, ⟨10.1109/TNSRE.2019.2953975⟩
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

Rapid serial visual presentation (RSVP) based brain-computer interfaces (BCIs) can detect target images among a continuous stream of rapidly presented images, by classifying a viewer’s event related potentials (ERPs) associated with the target and non-targets images. Whilst the majority of RSVP-BCI studies to date have concentrated on the identification of a single type of image, namely pictures , here we study the capability of RSVP-BCI to detect three different target image types: pictures, numbers and words . The impact of presentation duration (speed) i.e., 100–200ms (5–10Hz), 200–300ms (3.3–5Hz) or 300–400ms (2.5–3.3Hz), is also investigated. 2-way repeated measure ANOVA on accuracies of detecting targets from non-target stimuli (ratio 1:9) measured via area under the receiver operator characteristics curve (AUC) for ${N}={15}$ subjects revealed a significant effect of factor Stimulus-Type ( pictures, numbers, words ) (F (2,28) = 7.243, ${p} = {0.003}$ ) and for Stimulus-Duration (F (2,28) = 5.591, p = 0.011). Furthermore, there is an interaction between stimulus type and duration: F (4,56) = 4.419, ${p} = {0.004}$ ). The results indicate that when designing RSVP-BCI paradigms, the content of the images and the rate at which images are presented impact on the accuracy of detection and hence these parameters are key experimental variables in protocol design and applications, which apply RSVP for multimodal image datasets.

Details

Language :
English
ISSN :
15344320 and 15580210
Database :
OpenAIRE
Journal :
IEEE Transactions on Neural Systems and Rehabilitation Engineering, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Institute of Electrical and Electronics Engineers, 2019, ⟨10.1109/TNSRE.2019.2953975⟩, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, ⟨10.1109/TNSRE.2019.2953975⟩
Accession number :
edsair.doi.dedup.....9e2e5c6038e94bc073daf6e43b889fd9
Full Text :
https://doi.org/10.1109/TNSRE.2019.2953975⟩