Back to Search Start Over

Short-term optimal operation of water systems using ensemble forecasts

Authors :
Dirk Schwanenberg
P. J. van Overloop
N.C. Van de Giesen
Luciano Raso
DELFT UNIVERSITY OF TECHNOLOGY DELFT NLD
Partenaires IRSTEA
Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Gestion de l'Eau, Acteurs, Usages (UMR G-EAU)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-AgroParisTech-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD [France-Sud])
DELTARES FOUNDATION DELFT NLD
UNIVERSITY OF DUISBURG ESSEX DUISBURG DEU
Source :
Advances in Water Resources, Advances in Water Resources, Elsevier, 2014, 71, pp.200-208. ⟨10.1016/j.advwatres.2014.06.009⟩
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

International audience; Short-term water system operation can be realized using Model Predictive Control (MPC). MPC is a method for operational management of complex dynamic systems. Applied to open water systems, MPC provides integrated, optimal, and proactive management, when forecasts are available. Notwithstanding these properties, if forecast uncertainty is not properly taken into account, the system performance can critically deteriorate.Ensemble forecast is a way to represent short-term forecast uncertainty. An ensemble forecast is a set of possible future trajectories of a meteorological or hydrological system. The growing ensemble forecasts' availability and accuracy raises the question on how to use them for operational management.The theoretical innovation presented here is the use of ensemble forecasts for optimal operation. Specifically, we introduce a tree based approach. We called the new method Tree-Based Model Predictive Control (TB-MPC). In TB-MPC, a tree is used to set up a Multistage Stochastic Programming, which finds a different optimal strategy for each branch and enhances the adaptivity to forecast uncertainty. Adaptivity reduces the sensitivity to wrong forecasts and improves the operational performance.TB-MPC is applied to the operational management of Salto Grande reservoir, located at the border between Argentina and Uruguay, and compared to other methods.

Details

ISSN :
03091708
Volume :
71
Database :
OpenAIRE
Journal :
Advances in Water Resources
Accession number :
edsair.doi.dedup.....9e1e99eb5c0bacf5c6761858bb27c445
Full Text :
https://doi.org/10.1016/j.advwatres.2014.06.009