Back to Search
Start Over
A tunable topological insulator in the spin helical Dirac transport regime
- Source :
- Nature. 460:1101-1105
- Publication Year :
- 2009
- Publisher :
- Springer Science and Business Media LLC, 2009.
-
Abstract
- Helical Dirac fermions—charge carriers that behave as massless relativistic particles with an intrinsic angular momentum (spin) locked to its translational momentum—are proposed to be the key to realizing fundamentally new phenomena in condensed matter physics. Prominent examples include the anomalous quantization of magneto-electric coupling, half-fermion states that are their own antiparticle, and charge fractionalization in a Bose– Einstein condensate, all of which are not possible with conventional Dirac fermions of the graphene variety. Helical Dirac fermions have so far remained elusive owing to the lack of necessary spin-sensitive measurements and because such fermions are forbidden to exist in conventional materials harbouring relativistic electrons, such as graphene or bismuth. It has recently been proposed that helical Dirac fermions may exist at the edges of certain types of topologically ordered insulators—materials with a bulk insulating gap of spin–orbit origin and surface states protected against scattering by time-reversal symmetry—and that their peculiar properties may be accessed provided the insulator is tuned into the so-called topological transport regime. However, helical Dirac fermions have not been observed in existing topological insulators. Here we report the realization and characterization of a tunable topological insulator in a bismuthbased class of material by combining spin-imaging and momentum-resolved spectroscopies, bulk charge compensation, Hall transport measurements and surface quantum control. Our results reveal a spin-momentum locked Dirac cone carrying a nontrivial Berry’s phase that is nearly 100 per cent spin-polarized, which exhibits a tunable topological fermion density in the vicinity of the Kramers point and can be driven to the long-sought topological spin transport regime. The observed topological nodal state is shown to be protected even up to 300 K. Our demonstration of room-temperature topological order and non-trivial spintexture in stoichiometric Bi_2Se_3.M_x (M_x indicates surface doping or gating control) paves the way for future graphene-like studies of topological insulators, and applications of the observed spinpolarized edge channels in spintronic and computing technologies possibly at room temperature.
- Subjects :
- Condensed Matter::Quantum Gases
Physics
Antiparticle
Multidisciplinary
Helical Dirac fermion
Condensed matter physics
02 engineering and technology
Fermion
021001 nanoscience & nanotechnology
01 natural sciences
Symmetry protected topological order
symbols.namesake
Dirac fermion
Topological insulator
Quantum mechanics
0103 physical sciences
symbols
Topological order
010306 general physics
0210 nano-technology
Topological quantum number
Subjects
Details
- ISSN :
- 14764687 and 00280836
- Volume :
- 460
- Database :
- OpenAIRE
- Journal :
- Nature
- Accession number :
- edsair.doi.dedup.....9e1da014c83bdb8a5756e22cce812384
- Full Text :
- https://doi.org/10.1038/nature08234