Back to Search
Start Over
'WETWALL' : an innovative design concept for the treatment of wastewater at an urban scale
- Source :
- UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat. Dipósit de la Recerca de Catalunya, instname, Repositorio Abierto de la UdL, Universitad de Lleida, da Cunha, J A C, Arias, C A, Carvalho, P, Rysulova, M, Canals, J M, Pérez, G, Bosch, M G & Morató, J F 2018, ' “WETWALL” — an innovative design concept for the treatment of wastewater at an urban scale ', Desalination and Water Treatment, vol. 109, no. March, pp. 205-220 . https://doi.org/10.5004/dwt.2018.22143, https://doi.org/10.5004/dwt.2018.22143
- Publication Year :
- 2018
- Publisher :
- Taylor & Francis, 2018.
-
Abstract
- Rising temperatures, increasing food demand and scarcity of water and land resources highlight the importance of promoting the sustainable expansion of agriculture to our urban environment, while preserving water resources. Treating urban wastewaters, such as greywater and hydroponic wastewater, may represent a strategic point for the implementation of urban farming, ensuring food security, reducing pressures on water resources and promoting climate change mitigation. The WETWALL design concept proposes a unique ecotechnology for secondary wastewater treatment at an urban scale, which brings the novelty of a modular living wall hybrid flow. This concept is based on the integration of two established nature-based solutions/ecomimetic designs: constructed wetlands and a modular living walls. First presented is an overview about the state of the art in the scope of living walls treating wastewater, in order to identify the main design aspects related to the performance of such systems, which mainly concerns the removal of nitrates and phosphates. Second, the WETWALL design concept is presented. A scheme regarding the selection of the main components, such as plants and substrate, is proposed, and potential structure developments and operation strategies are discussed. In addition, considering the scope of integrating the circular economy with the design process, potential interactions between this technology and the urban environment are discussed. The main goal of this article is to substantiate the potential of the WETWALL design concept as an innovative wastewater treatment at an urban scale. Biggest thanks to the National Council for Scientific and Technological Development – Brazil (CNPQ), for their financial support (doctoral fellowship). The authors also would like to thank the UNESCO Chair on Sustainability of the Polytechnic University of Catalonia (Spain), the Aarhus University (Denmark) and the research groups GREA (2014 SGR 123), DIOPMA (2014 SGR 1543) and GICITED (2014 SGR 1298).
- Subjects :
- Food security
010504 meteorology & atmospheric sciences
Scope (project management)
Circular economy
Edificació::Instal·lacions i acondicionament d'edificis::Instal·lacions d'edificis alternatives [Àrees temàtiques de la UPC]
Economia circular
Ecotechnology
Nature-based solutions
010501 environmental sciences
Wastewater
Hidrologia urbana
Greywater
01 natural sciences
Constructed wetland
Climate change mitigation
Living wall
Urban hydrology
Environmental science
Engineering design process
Environmental planning
Edificació::Construcció sostenible [Àrees temàtiques de la UPC]
0105 earth and related environmental sciences
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Recercat. Dipósit de la Recerca de Catalunya, instname, Repositorio Abierto de la UdL, Universitad de Lleida, da Cunha, J A C, Arias, C A, Carvalho, P, Rysulova, M, Canals, J M, Pérez, G, Bosch, M G & Morató, J F 2018, ' “WETWALL” — an innovative design concept for the treatment of wastewater at an urban scale ', Desalination and Water Treatment, vol. 109, no. March, pp. 205-220 . https://doi.org/10.5004/dwt.2018.22143, https://doi.org/10.5004/dwt.2018.22143
- Accession number :
- edsair.doi.dedup.....9dd18fffe0943a723c4f4cb499fff7d0
- Full Text :
- https://doi.org/10.5004/dwt.2018.22143