Back to Search Start Over

Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space

Authors :
Jean-Michel Coron
Hoai-Minh Nguyen
Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Control And GEometry (CaGE )
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
ANR-15-CE23-0007,Finite4SoS,Commande et estimation en temps fini pour les Systèmes de Systèmes(2015)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
The authors were partially supported by ANR Finite4SoS ANR-15-CE23-0007
Source :
ESAIM: Control, Optimisation and Calculus of Variations, ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2020, 26, ESAIM: Control, Optimisation and Calculus of Variations, 2020, 26, ESAIM: Control, Optimisation and Calculus of Variations, 2020, 26, pp.119. ⟨10.1051/cocv/2020061⟩, ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2020, 26, pp.119. ⟨10.1051/cocv/2020061⟩
Publication Year :
2020

Abstract

International audience; We consider the finite-time stabilization of homogeneous quasilinear hyperbolic systems with one side controls and with nonlinear boundary condition at the other side. We present time-independent feedbacks leading to the finite-time stabilization in any time larger than the optimal time for the null controllability of the linearized system if the initial condition is sufficiently small. One of the key technical points is to establish the local well-posedness of quasilinear hyperbolic systems with nonlinear, non-local boundary conditions.

Details

Language :
English
ISSN :
12928119 and 12623377
Database :
OpenAIRE
Journal :
ESAIM: Control, Optimisation and Calculus of Variations, ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2020, 26, ESAIM: Control, Optimisation and Calculus of Variations, 2020, 26, ESAIM: Control, Optimisation and Calculus of Variations, 2020, 26, pp.119. ⟨10.1051/cocv/2020061⟩, ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2020, 26, pp.119. ⟨10.1051/cocv/2020061⟩
Accession number :
edsair.doi.dedup.....9db9590206d750ff16ea03256192ae0b