Back to Search
Start Over
The contrasting effect of the Ta/Nb ratio in (111)-layered B-site deficient hexagonal perovskite Ba5Nb4−xTaxO15 crystals on visible-light-induced photocatalytic water oxidation activity of their oxynitride derivatives
- Source :
- Dalton Transactions. 45:12559-12568
- Publication Year :
- 2016
- Publisher :
- Royal Society of Chemistry (RSC), 2016.
-
Abstract
- The effect of the Ta/Nb ratio in the (111)-layered B-site deficient hexagonal perovskite Ba5Nb4-xTaxO15 (0 ≤ x ≤ 4) crystals grown by a KCl flux method on visible-light-induced photocatalytic water oxidation activity of their oxynitride derivatives BaNb1-xTaxO2N (0 ≤ x ≤ 1) was investigated. The Rietveld refinement of X-ray data revealed that all Ba5Nb4-xTaxO15 samples were well crystallized in the space group P3[combining macron]m1 (no. 164). Phase-pure BaNb1-xTaxO2N (0 ≤ x ≤ 1) porous structures were obtained by nitridation of the flux-grown oxide crystals at 950 °C for 20, 25, 30, 35, and 40 h, respectively. The absorption edge of BaNb1-xTaxO2N (0 ≤ x ≤ 1) was slightly shifted from 720 to 690 nm with the increasing Ta/Nb ratio. The O2 evolution rate gradually progressed and reached the highest value (127.24 μmol in the first 2 h) with the Ta content up to 50 mol% but decreased at 75 and 100 mol% presumably due to the reduced specific surface area and high density of structural defects, such as grain boundaries acting as recombination centers, originated from high-temperature nitridation for prolonged periods. Transient absorption spectroscopy provided evidence for the effect of the Ta/Nb ratio on the behavior and energy states of photogenerated charge carriers, indicating a direct correlation with photocatalytic water oxidation activity of BaNb1-xTaxO2N.
- Subjects :
- Flux method
Materials science
Rietveld refinement
Analytical chemistry
Oxide
Mineralogy
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
Inorganic Chemistry
chemistry.chemical_compound
Absorption edge
chemistry
Specific surface area
Photocatalysis
Grain boundary
0210 nano-technology
Perovskite (structure)
Subjects
Details
- ISSN :
- 14779234 and 14779226
- Volume :
- 45
- Database :
- OpenAIRE
- Journal :
- Dalton Transactions
- Accession number :
- edsair.doi.dedup.....9d9543a15780cfb3d4ce8090e729ed81
- Full Text :
- https://doi.org/10.1039/c6dt02095j