Back to Search Start Over

Linear-sized independent sets in random cographs and increasing subsequences in separable permutations

Authors :
Feray, Valentin
Bassino, Frédérique
Bouvel, Mathilde
Drmota, Michael
Gerin, Lucas
Maazoun, Mickaël
Pierrot, Adeline
Laboratoire d'Informatique de Paris-Nord (LIPN)
Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord
Designing the Future of Computational Models (MOCQUA)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Institute of Discrete Mathematics and Geometry [Vienne] (TU Wien)
Vienna University of Technology (TU Wien)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Unité de Mathématiques Pures et Appliquées (UMPA-ENSL)
École normale supérieure de Lyon (ENS de Lyon)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Source :
Combinatorial Theory, Combinatorial Theory, 2022, 2 (3), https://escholarship.org/uc/item/23340676. ⟨10.5070/C62359179⟩
Publication Year :
2022
Publisher :
California Digital Library (CDL), 2022.

Abstract

This paper is interested in independent sets (or equivalently, cliques) in uniform random cographs. We also study their permutation analogs, namely, increasing subsequences in uniform random separable permutations. First, we prove that, with high probability as $n$ gets large, the largest independent set in a uniform random cograph with $n$ vertices has size $o(n)$. This answers a question of Kang, McDiarmid, Reed and Scott. Using the connection between graphs and permutations via inversion graphs, we also give a similar result for the longest increasing subsequence in separable permutations. These results are proved using the self-similarity of the Brownian limits of random cographs and random separable permutations, and actually apply more generally to all families of graphs and permutations with the same limit. Second, and unexpectedly given the above results, we show that for $\beta >0$ sufficiently small, the expected number of independent sets of size $\beta n$ in a uniform random cograph with $n$ vertices grows exponentially fast with $n$. We also prove a permutation analog of this result. This time the proofs rely on singularity analysis of the associated bivariate generating functions.<br />Comment: 35 pages, 3 figures, attached python worksheet for the singularity analysis computation. v3: presentation improved, following referee's suggestions, use of journal layout

Details

ISSN :
27661334
Volume :
2
Database :
OpenAIRE
Journal :
Combinatorial Theory
Accession number :
edsair.doi.dedup.....9d87f6e3e689089ce6d6128ca321878b