Back to Search Start Over

Simulation of an artificial upwelling using immersed in situ phytoplankton microcosms

Authors :
Marie Boye
Denis de la Broise
Anne Donval
Mélanie Giraud
Véronique Garçon
Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
France Energies Marines [Brest]
Source :
Journal of Experimental Marine Biology and Ecology, Journal of Experimental Marine Biology and Ecology, Elsevier, 2016, 475, pp.80-88. ⟨10.1016/j.jembe.2015.11.006⟩
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

00000 ăWOS:000369212600010; International audience; The inflow of deep seawater in the surface layer by an Ocean Thermal Energy Conversion (OTEC) plant will generate artificial upwelling. In order to study the potential impact on biogeochemical processes that could result, in situ microcosms were designed to simulate seawater plant discharge and these were deployed off the Caribbean coast of Martinique. Seawater was collected in ultra-clean conditions at maximum chlorophyll a concentrations (45 m depth). The water was then mixed with either 2% or 10% deep seawater (1100 m depth) and put in 2.3 L polycarbonate bottles. These microcosms were immersed for 6 days at 45 m depth on a 220 m mooring. Samples from the surrounding environment and from the microcosms were analyzed by pigment quantification, counting of picophytoplankton groups and macronutrient analyses. Similar trends in the evolutions of the phytoplankton populations were observed over time between the control microcosms (without addition of deep seawater) and the surrounding environment, suggesting that these microcosms can be used as a realistic representation of the natural surrounding waters over a 6-day incubation period. Microcosm enrichment with 10% deep seawater induced a shift in the phytoplankton assemblage towards the development of diatoms, haptophytes, and Prochlorococcus, whereas 2% enrichment only led to an increase in the Prochlorococcus population.

Details

ISSN :
00220981
Volume :
475
Database :
OpenAIRE
Journal :
Journal of Experimental Marine Biology and Ecology
Accession number :
edsair.doi.dedup.....9d839f10faff852102354c8ea0ebaede