Back to Search
Start Over
Structural basis for topoisomerase VI inhibition by the anti-Hsp90 drug radicicol
- Source :
- Nucleic Acids Research
- Publication Year :
- 2006
- Publisher :
- Oxford University Press, 2006.
-
Abstract
- Members of the GHL ATPase superfamily, including type II topoisomerases, Hsp90-class chaperones, and MutL, all share a common GHKL-type ATP-binding fold and act as nucleotide-controlled 'molecular clamps'. These enzymes' ATP-binding sites have proven to be rich drug targets, and certain inhibitors of type II topoisomerases and Hsp90 bind to this region and competitively inhibit these enzymes. Recently, it was found that radicicol, a drug known to block Hsp90 function, also inhibits the archaeal type IIB topoisomerase topo VI. Here, we use X-ray crystallography to show that despite low sequence identity ( approximately 10-12%) between topo VI and Hsp90, radicicol binds to the ATPase sites of these two enzymes in an equivalent manner. We further demonstrate that radicicol inhibits both the dimerization of the topo VI ATPase domains and ATP hydrolysis, two critical steps in the enzyme's strand passage reaction. This work contributes to a growing set of structures detailing the interactions between GHL-family proteins and various drugs, and reveals radicicol as a versatile scaffold for targeting distantly related GHL enzymes.
- Subjects :
- chemistry.chemical_classification
Adenosine Triphosphatases
Binding Sites
biology
Nucleic Acid Enzymes
Protein Conformation
Topoisomerase
ATPase
Archaeal Proteins
Crystallography, X-Ray
Hsp90
Radicicol
chemistry.chemical_compound
Enzyme
Protein structure
DNA Topoisomerases, Type II
chemistry
Biochemistry
ATP hydrolysis
Genetics
biology.protein
HSP90 Heat-Shock Proteins
Macrolides
Binding site
Enzyme Inhibitors
Subjects
Details
- Language :
- English
- ISSN :
- 13624962 and 03051048
- Volume :
- 34
- Issue :
- 15
- Database :
- OpenAIRE
- Journal :
- Nucleic Acids Research
- Accession number :
- edsair.doi.dedup.....9d7ab82b8266189f63b7958ac06b651f