Back to Search Start Over

Mechanochemical synthesis of Aromatic Infrared Band carriers. The top-down chemistry of interstellar carbonaceous dust grain analogues

Authors :
Emmanuel Dartois
E. Charon
Cécile Engrand
Christophe Sandt
Thomas Pino
Institut des Sciences Moléculaires d'Orsay (ISMO)
Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Edifices Nanométriques (LEDNA)
Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie (ex SIS2M) (NIMBE UMR 3685)
Institut Rayonnement Matière de Saclay (IRAMIS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Rayonnement Matière de Saclay (IRAMIS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)
Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Synchrotron SOLEIL (SSOLEIL)
Centre National de la Recherche Scientifique (CNRS)
INTEGRITY project, funded by the Domaine d’Intérêt Majeur ACAV, labelled by the Île-de-France region.
P2IO LabEx programme: 'Evolution de la matière du milieu interstellaire aux exoplanètes avec le JWST'.
Programme National 'Physique et Chimie du Milieu Interstellaire' (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNES.
ANR-18-CE31-0011,COMETOR,Origine de la poussière cométaire(2018)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2020, 637, pp.A82. ⟨10.1051/0004-6361/202037725⟩, Astronomy and Astrophysics-A&A, 2020, 637, pp.A82. ⟨10.1051/0004-6361/202037725⟩
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

Context. Interstellar space hosts nanometre- to micron-sized dust grains, which are responsible for the reddening of stars in the visible. The carbonaceous-rich component of these grain populations emits in infrared bands that have been observed remotely for decades with telescopes and satellites. They are a key ingredient of Galactic radiative transfer models and astrochemical dust evolution. However, except for C60 and its cation, the precise carriers for most of these bands are still unknown and not well reproduced in the laboratory. Aims. In this work, we aim to show the high-energy mechanochemical synthesis of disordered aromatic and aliphatic analogues provides interstellar relevant dust particles. Methods. The mechanochemical milling of carbon-based solids under a hydrogen atmosphere produces particles with a pertinent spectroscopic match to astrophysical observations of aromatic infrared band (AIB) emission, linked to the so-called astrophysical polycyclic aromatic hydrocarbon hypothesis. The H/C ratio for the analogues that best reproduce these astronomical infrared observations lies in the 5 ± 2% range, potentially setting a constraint on astrophysical models. This value happens to be much lower than diffuse interstellar hydrogenated amorphous carbons, another Galactic dust grain component observed in absorption, and it most probably provides a constraint on the hydrogenation degree of the most aromatic carbonaceous dust grain carriers. A broad band, observed in AIBs, evolving in the 1350–1200 cm−1 (7.4–8.3 μm) range is correlated to the hydrogen content, and thus the structural evolution in the analogues produced. Results. Our results demonstrate that the mechanochemical process, which does not take place in space, can be seen as an experimental reactor to stimulate very local energetic chemical reactions. It introduces bond disorder and hydrogen chemical attachment on the produced defects, with a net effect similar to the interstellar space very localised chemical reactions with solids. From the vantage point of astrophysics, these laboratory interstellar dust analogues will be used to predict dust grain evolution under simulated interstellar conditions, including harsh radiative environments. Such interstellar analogues offer an opportunity to derive a global view on the cycling of matter in other star forming systems.

Details

ISSN :
00046361
Database :
OpenAIRE
Journal :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2020, 637, pp.A82. ⟨10.1051/0004-6361/202037725⟩, Astronomy and Astrophysics-A&A, 2020, 637, pp.A82. ⟨10.1051/0004-6361/202037725⟩
Accession number :
edsair.doi.dedup.....9d4086fcca3732671eec03b3d9c59733
Full Text :
https://doi.org/10.48550/arxiv.2004.02993