Back to Search Start Over

A novel individual-tree mixed model to account for competition and environmental heterogeneity: a Bayesian approach

Authors :
Eduardo P. Cappa
Leopoldo Sanchez
Facundo Muñoz
Rodolfo Juan Carlos Cantet
Unité de recherche Amélioration, Génétique et Physiologie Forestières (AGPF)
Institut National de la Recherche Agronomique (INRA)
Instituto Nacional de Tecnología Agropecuaria (INTA)
Consejo Nacional de Investigaciones Científicas y Técnicas
Universidad de Buenos Aires (UBA)
Grants of Agencia Nacional de Ciencia y Tecnología (FONCyT PICT 00321) of Argentina, under the Programa de Modernización Tecnológica III, Contrato de Préstamo BID 1728/OC-AR.
European Project: 284181,EC:FP7:INFRA,FP7-INFRASTRUCTURES-2011-1,TREES4FUTURE(2011)
Source :
Tree Genetics and Genomes, Tree Genetics and Genomes, Springer Verlag, 2015, 11 (6), 15 p. ⟨10.1007/s11295-015-0917-3⟩, Tree Genetics and Genomes 6 (11), 15 p.. (2015)
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

Negative correlation caused by competition among individuals and positive spatial correlation due to environmental heterogeneity may lead to biases in estimating genetic parameters and predicting breeding values (BVs) from forest genetic trials. Former models dealing with competition and environmental heterogeneity did not account for the additive relationships among trees or for the full spatial covariance. This paper extends an individual-tree mixed model with direct additive genetic, genetic, and environmental competition effects, by incorporating a two-dimensional smoothing surface to account for complex patterns of environmental heterogeneity (competition + spatial model (CSM)). We illustrate the proposed model using simulated and real data from a loblolly pine progeny trial. The CSM was compared with three reduced individual-tree mixed models using a real dataset, while simulations comprised only CSM versus true-parameters comparisons. Dispersion parameters were estimated using Bayesian techniques via Gibbs sampling. Simulation results showed that the CSM yielded posterior mean estimates of variance components with slight or negligible biases in the studied scenarios, except for the permanent environment variance. The worst performance of the simulated CSM was under a scenario with weak competition effects and small-scale environmental heterogeneity. When analyzing real data, the CSM yielded a lower value of the deviance information criterion than the reduced models. Moreover, although correlations between predicted BVs calculated from CSM and from a standard model with block effects and direct genetic effects only were high, the ranking among the top 5 % ranked individuals showed differences which indicated that the two models will have quite different genotype selections for the next cycle of breeding. Fil: Cappa, Eduardo Pablo. Instituto Nacional de Tecnología Agropecuaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Muñoz, Facundo. Institut National de la Recherche Agronomique; Francia Fil: Sanchez, Leopoldo. Institut National de la Recherche Agronomique; Francia Fil: Cantet, Rodolfo Juan Carlos. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina

Details

Language :
English
ISSN :
16142942 and 16142950
Database :
OpenAIRE
Journal :
Tree Genetics and Genomes, Tree Genetics and Genomes, Springer Verlag, 2015, 11 (6), 15 p. ⟨10.1007/s11295-015-0917-3⟩, Tree Genetics and Genomes 6 (11), 15 p.. (2015)
Accession number :
edsair.doi.dedup.....9d243eb8a9052b06c547ff6fd634b6fa
Full Text :
https://doi.org/10.1007/s11295-015-0917-3⟩