Back to Search Start Over

Rapid travelling waves in the nonlocal Fisher equation connect two unstable states

Authors :
Jérôme Coville
Matthieu Alfaro
Institut de Mathématiques et de Modélisation de Montpellier (I3M)
Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
Biostatistique et Processus Spatiaux (BioSP)
Institut National de la Recherche Agronomique (INRA)
Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Biostatistique et Processus Spatiaux (BIOSP)
Source :
Applied Mathematics Letters, Applied Mathematics Letters, Elsevier, 2012, 25 (12), pp.25 (2012), 2095-2099. ⟨10.1016/j.aml.2012.05.006⟩, Applied Mathematics Letters, Elsevier, 2012, pp.25 (2012), 2095-2099
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; In this note, we give a positive answer to a question addressed in \cite{Nad-Per-Tan}. Precisely we prove that, for any kernel and any slope at the origin, there do exist travelling wave solutions (actually those which are \lq\lq rapid\rq\rq) of the nonlocal Fisher equation that connect the two homogeneous steady states 0 (dynamically unstable) and 1. In particular this allows situations where 1 is unstable in the sense of Turing. Our proof does not involve any maximum principle argument and applies to kernels with {\it fat tails}.

Details

Language :
English
ISSN :
08939659
Database :
OpenAIRE
Journal :
Applied Mathematics Letters, Applied Mathematics Letters, Elsevier, 2012, 25 (12), pp.25 (2012), 2095-2099. ⟨10.1016/j.aml.2012.05.006⟩, Applied Mathematics Letters, Elsevier, 2012, pp.25 (2012), 2095-2099
Accession number :
edsair.doi.dedup.....9d112fdea02d854b4d05ee0a4926f910
Full Text :
https://doi.org/10.1016/j.aml.2012.05.006⟩