Back to Search
Start Over
Rapid travelling waves in the nonlocal Fisher equation connect two unstable states
- Source :
- Applied Mathematics Letters, Applied Mathematics Letters, Elsevier, 2012, 25 (12), pp.25 (2012), 2095-2099. ⟨10.1016/j.aml.2012.05.006⟩, Applied Mathematics Letters, Elsevier, 2012, pp.25 (2012), 2095-2099
- Publication Year :
- 2012
- Publisher :
- HAL CCSD, 2012.
-
Abstract
- International audience; In this note, we give a positive answer to a question addressed in \cite{Nad-Per-Tan}. Precisely we prove that, for any kernel and any slope at the origin, there do exist travelling wave solutions (actually those which are \lq\lq rapid\rq\rq) of the nonlocal Fisher equation that connect the two homogeneous steady states 0 (dynamically unstable) and 1. In particular this allows situations where 1 is unstable in the sense of Turing. Our proof does not involve any maximum principle argument and applies to kernels with {\it fat tails}.
- Subjects :
- Traveling waves
integro-differential equation
Applied Mathematics
010102 general mathematics
Mathematical analysis
Fisher equation
turing instability
01 natural sciences
010101 applied mathematics
Mathematics - Analysis of PDEs
Maximum principle
Turing instability
Homogeneous
Integro-differential equation
Traveling wave
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
travelling waves
0101 mathematics
Turing
computer
Kernel (category theory)
Mathematics
computer.programming_language
Analysis of PDEs (math.AP)
Subjects
Details
- Language :
- English
- ISSN :
- 08939659
- Database :
- OpenAIRE
- Journal :
- Applied Mathematics Letters, Applied Mathematics Letters, Elsevier, 2012, 25 (12), pp.25 (2012), 2095-2099. ⟨10.1016/j.aml.2012.05.006⟩, Applied Mathematics Letters, Elsevier, 2012, pp.25 (2012), 2095-2099
- Accession number :
- edsair.doi.dedup.....9d112fdea02d854b4d05ee0a4926f910
- Full Text :
- https://doi.org/10.1016/j.aml.2012.05.006⟩