Back to Search Start Over

Right-jumps and pattern avoiding permutations

Authors :
Jean-Luc Baril
Céline Moreira Dos Santos
Cyril Banderier
Laboratoire d'Informatique de Paris-Nord (LIPN)
Université Sorbonne Paris Cité (USPC)-Institut Galilée-Université Paris 13 (UP13)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i)
Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM)
Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
Laboratoire d'Informatique de Paris-Nord ( LIPN )
Université Paris 13 ( UP13 ) -Université Sorbonne Paris Cité ( USPC ) -Institut Galilée-Centre National de la Recherche Scientifique ( CNRS )
Laboratoire Electronique, Informatique et Image ( Le2i )
Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS )
Source :
Discrete Mathematics and Theoretical Computer Science, Discrete Mathematics and Theoretical Computer Science, DMTCS, 2017, 18 (2), pp.1-17
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

We study the iteration of the process "a particle jumps to the right" in permutations. We prove that the set of permutations obtained in this model after a given number of iterations from the identity is a class of pattern avoiding permutations. We characterize the elements of the basis of this class and we enumerate these "forbidden minimal patterns" by giving their bivariate exponential generating function: we achieve this via a catalytic variable, the number of left-to-right maxima. We show that this generating function is a D-finite function satisfying a nice differential equation of order~2. We give some congruence properties for the coefficients of this generating function, and we show that their asymptotics involves a rather unusual algebraic exponent (the golden ratio $(1+\sqrt 5)/2$) and some unusual closed-form constants. We end by proving a limit law: a forbidden pattern of length $n$ has typically $(\ln n) /\sqrt{5}$ left-to-right maxima, with Gaussian fluctuations.<br />Following the work presented at the conferences Analysis of Algorithms (AofA'15) and Permutation Patterns'15, this arXiv version corresponds to the version published in DMTCS, up to minor details/typos fixed here

Details

Language :
English
ISSN :
14627264 and 13658050
Database :
OpenAIRE
Journal :
Discrete Mathematics and Theoretical Computer Science, Discrete Mathematics and Theoretical Computer Science, DMTCS, 2017, 18 (2), pp.1-17
Accession number :
edsair.doi.dedup.....9cf83af27e4dbb14132fe4a21ba2db96