Back to Search Start Over

On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems

Authors :
Jean-François Mercier
Kerem Ege
Cyril Touzé
François Blanc
A.-S. Bonnet Ben-Dhia
Unité de Mécanique (UME)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Dynamique des Fluides et Acoustique (DFA)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Propagation des Ondes : Étude Mathématique et Simulation (POEMS)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Unité de Mathématiques Appliquées (UMA)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Vibrations Acoustique (LVA)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)
centre Lyonnais d'Acoustique (CeLyA)
Université de Lyon
Source :
Mechanical Systems and Signal Processing, Mechanical Systems and Signal Processing, Elsevier, 2013, 36 (2), pp.520-539. ⟨10.1016/j.ymssp.2012.10.016⟩, Mechanical Systems and Signal Processing, 2013, 36 (2), pp.520-539. ⟨10.1016/j.ymssp.2012.10.016⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; Numerical computation of Nonlinear Normal Modes (NNMs) for conservative vibratory systems is addressed, with the aim of deriving accurate reduced-order models up to large amplitudes. A numerical method is developed, based on the center manifold approach for NNMs, which uses an interpretation of the equations as a transport problem, coupled to a periodicity condition for ensuring manifold's continuity. Systematic comparisons are drawn with other numerical methods, and especially with continuation of periodic orbits, taken as reference solutions. Three di erent mechanical systems, displaying peculiar characteristics allowing for a general view of the performance of the methods for vibratory systems, are selected. Numerical results show that invariant manifolds encounter folding points at large amplitude, generically (but not only) due to internal resonances. These folding points involve an intrinsic limitation to reduced-order models based on the center manifold and on the idea of a functional relationship between slave and master coordinates. Below that amplitude limit, numerical methods are able to produce reduced-order models allowing for a precise prediction of the backbone curve.

Details

Language :
English
ISSN :
08883270 and 10961216
Database :
OpenAIRE
Journal :
Mechanical Systems and Signal Processing, Mechanical Systems and Signal Processing, Elsevier, 2013, 36 (2), pp.520-539. ⟨10.1016/j.ymssp.2012.10.016⟩, Mechanical Systems and Signal Processing, 2013, 36 (2), pp.520-539. ⟨10.1016/j.ymssp.2012.10.016⟩
Accession number :
edsair.doi.dedup.....9cdc513526e2e4eb6140cfc7df95b9d4
Full Text :
https://doi.org/10.1016/j.ymssp.2012.10.016⟩