Back to Search Start Over

Glucose promotes stress resistance in the fungal pathogen, Candida albicans

Authors :
Alistair J. P. Brown
Brice Enjalbert
Tim Young
Neil A. R. Gow
Frank C. Odds
Iryna Bohovych
Alexandra Rodaki
University of Aberdeen
Pfizer
Source :
Molecular Biology of the Cell, Molecular Biology of the Cell, American Society for Cell Biology, 2009, 20 (22), pp.4845-4855. ⟨10.1091/mbc.e09-01-0002⟩
Publication Year :
2009
Publisher :
HAL CCSD, 2009.

Abstract

International audience; Metabolic adaptation, and in particular the modulation of carbon assimilatory pathways during disease progression, is thought to contribute to the pathogenicity of Candida albicans. Therefore, we have examined the global impact of glucose upon the C. albicans transcriptome, testing the sensitivity of this pathogen to wide-ranging glucose levels (0.01, 0.1, and 1.0%). We show that, like Saccharomyces cerevisiae, C. albicans is exquisitely sensitive to glucose, regulating central metabolic genes even in response to 0.01% glucose. This indicates that glucose concentrations in the bloodstream (approximate range 0.05-0.1%) have a significant impact upon C. albicans gene regulation. However, in contrast to S. cerevisiae where glucose down-regulates stress responses, some stress genes were induced by glucose in C. albicans. This was reflected in elevated resistance to oxidative and cationic stresses and resistance to an azole antifungal agent. Cap1 and Hog1 probably mediate glucose-enhanced resistance to oxidative stress, but neither is essential for this effect. However, Hog1 is phosphorylated in response to glucose and is essential for glucose-enhanced resistance to cationic stress. The data suggest that, upon entering the bloodstream, C. albicans cells respond to glucose increasing their resistance to the oxidative and cationic stresses central to the armory of immunoprotective phagocytic cells.

Details

Language :
English
ISSN :
19394586
Database :
OpenAIRE
Journal :
Molecular Biology of the Cell, Molecular Biology of the Cell, American Society for Cell Biology, 2009, 20 (22), pp.4845-4855. ⟨10.1091/mbc.e09-01-0002⟩
Accession number :
edsair.doi.dedup.....9cba278d2d349380889bffd9f735c45e