Back to Search Start Over

Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies

Authors :
Pedro J. Gutiérrez
Alessandro Maturilli
Joern Helbert
Magdalena Wilska
Laurent Jorda
Joshua L. Bandfield
Joshua P. Emery
Olivier Groussin
Maria Teresa Capria
Thomas Mueller
Björn Davidsson
Hans Rickman
Department of Physics and Astronomy [Uppsala]
Uppsala University
Space Research Centre of Polish Academy of Sciences (CBK)
Polska Akademia Nauk = Polish Academy of Sciences (PAN)
Laboratoire d'Astrophysique de Marseille (LAM)
Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES)
Instituto de Astrofísica de Andalucía (IAA)
Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
Istituto di Astrofisica Spaziale e Fisica cosmica - Roma (IASF-Roma)
Istituto Nazionale di Astrofisica (INAF)
Department of Earth and Planetary Sciences [Knoxville]
The University of Tennessee [Knoxville]
DLR Institute of Planetary Research
German Aerospace Center (DLR)
Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
Source :
Icarus, Icarus, Elsevier, 2015, 252, pp.1--21. ⟨10.1016/j.icarus.2014.12.029⟩, Icarus, 2015, 252, pp.1--21. ⟨10.1016/j.icarus.2014.12.029⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; Spacecraft observations of atmosphereless Solar System bodies, combined with thermophysical modeling, provide important information about the thermal inertia and degree of surface roughness of these bodies. The thermophysical models rely on various methods of generating topography, the most common being the concave spherical segment. We here compare the properties of thermal emission for a number of different topographies - concave spherical segments, random Gaussians, fractals and parallel sinusoidal trenches - for various illumination and viewing geometries, degrees of surface roughness and wavelengths. We find that the thermal emission is strongly dependent on roughness type, even when the degrees of roughness are identical, for certain illumination and viewing geometries. The systematic usage of any single topography model may therefore bias determinations of thermal inertia and level of roughness. We outline strategies that may be employed during spacecraft observations to disentangle thermal inertia, level of roughness and type of topography. We also compare the numerically complex and time consuming full-scale thermophysical models with a simplified statistical approach, which is fairly easy to implement and quick to run. We conclude that the simplified statistical approach is similar to thermophysical models for cases tested here, which enables the user to analyze huge amounts of spectral data at a low numerical cost. (C) 2015 Elsevier Inc. All rights reserved.

Details

Language :
English
ISSN :
00191035 and 10902643
Database :
OpenAIRE
Journal :
Icarus, Icarus, Elsevier, 2015, 252, pp.1--21. ⟨10.1016/j.icarus.2014.12.029⟩, Icarus, 2015, 252, pp.1--21. ⟨10.1016/j.icarus.2014.12.029⟩
Accession number :
edsair.doi.dedup.....9cb168b8fec6c7636198e5a86c318026
Full Text :
https://doi.org/10.1016/j.icarus.2014.12.029⟩