Back to Search Start Over

Relative heat content asymptotics for sub-Riemannian manifolds

Authors :
Agrachev, Andrei
Rizzi, Luca
Rossi, Tommaso
Scuola Internazionale Superiore di Studi Avanzati / International School for Advanced Studies (SISSA / ISAS)
Institut Fourier (IF)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Rheinische Friedrich-Wilhelms-Universität Bonn
Control And GEometry (CaGE )
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
ANR-18-CE40-0012,RAGE,Analyse Réelle et Géométrie(2018)
European Project: 945655,GEOSUB
Rossi, Tommaso
Publication Year :
2021

Abstract

The relative heat content associated with a subset $\Omega\subset M$ of a sub-Riemannian manifold, is defined as the total amount of heat contained in $\Omega$ at time $t$, with uniform initial condition on $\Omega$, allowing the heat to flow outside the domain. In this work, we obtain a fourth-order asymptotic expansion in square root of $t$ of the relative heat content associated with relatively compact non-characteristic domains. Compared to the classical heat content that we studied in [Rizzi, Rossi - J. Math. Pur. Appl., 2021], several difficulties emerge due to the absence of Dirichlet conditions at the boundary of the domain. To overcome this lack of information, we combine a rough asymptotic for the temperature function at the boundary, coupled with stochastic completeness of the heat semi-group. Our technique applies to any (possibly rank-varying) sub-Riemannian manifold that is globally doubling and satisfies a global weak Poincar\'e inequality, including in particular sub-Riemannian structures on compact manifolds and Carnot groups.<br />Comment: 44 pages

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....9cada54ae67b9a20451a421acf9b2352