Back to Search Start Over

Oxygen isotopic variations in the outer margins and Wark–Lovering rims of refractory inclusions

Authors :
Peter K. Weber
Steven B. Simon
Lawrence Grossman
J. E. P. Matzel
Ian D. Hutcheon
D. Kent Ross
Justin I. Simon
Source :
Geochimica et Cosmochimica Acta. :242-276

Abstract

Oxygen isotopic variations across the outer margins and Wark–Lovering (WL) rims of a diverse suite of six coarse-grained Types A and B refractory inclusions from both oxidized and reduced CV3 chondrites suggest that CAIs originated from a 16 O-rich protosolar gas reservoir and were later exposed to both relatively 17,18 O-rich and 16 O-rich reservoirs. The O-isotope profiles of CAIs can be explained by changes in the composition of gas near the protoSun or the migration of CAIs through a heterogeneous nebula. Variability within the inclusion interiors appears to have been set prior to WL rim growth. Modeling the isotopic zoning profiles as diffusion gradients between inclusion interiors and edges establishes a range of permissible time–temperature combinations for their exposure in the nebula. At mean temperatures of 1400 K, models that match the isotope gradients in the inclusions yield timescales ranging from 5 × 10 3 to 3 × 10 5 years. Assuming CAIs originated with a relatively 16 O-rich (protosolar) isotopic composition, differences among the melilite interiors and the isotopic gradients in their margins imply the existence of a number of isotopically distinct reservoirs. Evidence at the edges of some CAIs for subsequent isotopic exchange may relate to the beginning of rim formation. In the WL rim layers surrounding the interiors, spinel is relatively 16 O-rich but subtly distinct among different CAIs. Melilite is often relatively 16 O-poor, but rare relatively 16 O-rich grains also exist. Pyroxene generally exhibits intermediate O-isotope compositions and isotopic zoning. Olivine in both WL and accretionary rims, when present, is isotopically heterogeneous. The extreme isotopic heterogeneity among and within individual WL rim layers and in particular, the observed trends of outward 16 O-enrichments, suggest that rims surrounding CAIs contained in CV3 chondrites, like the inclusions themselves, formed from a number of isotopically distinct gas reservoirs. Collectively, these results support numerical protoplanetary disk models in which CAIs were transported between several distinct nebular reservoirs multiple times prior to accretion onto a parent body.

Details

Language :
English
ISSN :
00167037
Database :
OpenAIRE
Journal :
Geochimica et Cosmochimica Acta
Accession number :
edsair.doi.dedup.....9ca526cba3b5b328604049c0fe79f996
Full Text :
https://doi.org/10.1016/j.gca.2016.04.025