Back to Search Start Over

Fault detection and diagnosis in water resource recovery facilities using incremental PCA

Authors :
Pezhman Kazemi
Jean-Philippe Steyer
Jaume Giralt
Christophe Bengoa
Armin Masoumian
Departament d′Enginyeria Quimica
Universitat Rovira i Virgili
Departament d'Enginyeria Informàtica i Matemàtiques
Laboratoire de Biotechnologie de l'Environnement [Narbonne] (LBE)
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Spanish Ministry of Economy and Competitiveness for providing financial support through grants CTM2015-67970-P and for funding the doctoral scholarship (BES-2012-059675)
Comissioner for Universities and Research of the DIUE (Department of Innovation, Universities and Business) of the autonomous government of Catalonia (2017 SGR 396)
Universitat Rovira i Virgili (2017PFR-URV-B2-33)
Fundació Bancària ‘la Caixa’ (2017ARES-06).
Source :
Water Science and Technology, Water Science and Technology, IWA Publishing, 2020, 82 (12), pp.2711-2724. ⟨10.2166/wst.2020.368⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Because of the static nature of conventional principal component analysis (PCA), natural process variations may be interpreted as faults when it is applied to processes with time-varying behavior. In this paper, therefore, we propose a complete adaptive process monitoring framework based on incremental principal component analysis (IPCA). This framework updates the eigenspace by incrementing new data to the PCA at a low computational cost. Moreover, the contribution of variables is recursively provided using complete decomposition contribution (CDC). To impute missing values, the empirical best linear unbiased prediction (EBLUP) method is incorporated into this framework. The effectiveness of this framework is evaluated using benchmark simulation model No. 2 (BSM2). Our simulation results show the ability of the proposed approach to distinguish between time-varying behavior and faulty events while correctly isolating the sensor faults even when these faults are relatively small.

Details

Language :
English
ISSN :
02731223
Database :
OpenAIRE
Journal :
Water Science and Technology, Water Science and Technology, IWA Publishing, 2020, 82 (12), pp.2711-2724. ⟨10.2166/wst.2020.368⟩
Accession number :
edsair.doi.dedup.....9c9faf5a688134724299c8e325510f36
Full Text :
https://doi.org/10.2166/wst.2020.368⟩