Back to Search Start Over

Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer’s disease progression

Authors :
Jurgen Fripp
Laurent D. Cohen
Laurent Risser
Hugo Raguet
Jean-Baptiste Fiot
François-Xavier Vialard
CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
CSIRO Information and Commuciation Technologies (CSIRO ICT Centre)
Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO)
Laboratory of Neuro Imaging [Los Angeles] (LONI)
University of California [Los Angeles] (UCLA)
University of California-University of California
IBM Research, Smarter Cities Technology Centre
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
University of California (UC)-University of California (UC)
Source :
Neuroimage-Clinical, Neuroimage-Clinical, Elsevier, 2014, pp.718-729, Neuroimage-Clinical, Elsevier, 2014, 4, pp.718-729. ⟨10.1016/j.nicl.2014.02.002⟩, Neuroimage-Clinical, 2014, 4, pp.718-729. ⟨10.1016/j.nicl.2014.02.002⟩, NeuroImage : Clinical, Neuroimage-Clinical, 2014, 4, pp.718-729, NeuroImage: Clinical, Vol 4, Iss C, Pp 718-729 (2014)
Publication Year :
2014
Publisher :
HAL CCSD, 2014.

Abstract

In the context of Alzheimer's disease, two challenging issues are (1) the characterization of local hippocampal shape changes specific to disease progression and (2) the identification of mild-cognitive impairment patients likely to convert. In the literature, (1) is usually solved first to detect areas potentially related to the disease. These areas are then considered as an input to solve (2). As an alternative to this sequential strategy, we investigate the use of a classification model using logistic regression to address both issues (1) and (2) simultaneously. The classification of the patients therefore does not require any a priori definition of the most representative hippocampal areas potentially related to the disease, as they are automatically detected. We first quantify deformations of patients' hippocampi between two time points using the large deformations by diffeomorphisms framework and transport these deformations to a common template. Since the deformations are expected to be spatially structured, we perform classification combining logistic loss and spatial regularization techniques, which have not been explored so far in this context, as far as we know. The main contribution of this paper is the comparison of regularization techniques enforcing the coefficient maps to be spatially smooth (Sobolev), piecewise constant (total variation) or sparse (fused LASSO) with standard regularization techniques which do not take into account the spatial structure (LASSO, ridge and ElasticNet). On a dataset of 103 patients out of ADNI, the techniques using spatial regularizations lead to the best classification rates. They also find coherent areas related to the disease progression.<br />Highlights • Study of deformation models for longitudinal analysis • New framework combining LDDMM, logistic regression and spatial regularizations • Simultaneous disease progression classification and biomarker identification • Validation in the context of Alzheimer's disease on a large dataset from ADNI

Details

Language :
English
ISSN :
22131582
Database :
OpenAIRE
Journal :
Neuroimage-Clinical, Neuroimage-Clinical, Elsevier, 2014, pp.718-729, Neuroimage-Clinical, Elsevier, 2014, 4, pp.718-729. ⟨10.1016/j.nicl.2014.02.002⟩, Neuroimage-Clinical, 2014, 4, pp.718-729. ⟨10.1016/j.nicl.2014.02.002⟩, NeuroImage : Clinical, Neuroimage-Clinical, 2014, 4, pp.718-729, NeuroImage: Clinical, Vol 4, Iss C, Pp 718-729 (2014)
Accession number :
edsair.doi.dedup.....9c8aa91fe10018020733ad204a505fc7
Full Text :
https://doi.org/10.1016/j.nicl.2014.02.002⟩