Back to Search
Start Over
Modular classes of Poisson-Nijenhuis Lie algebroids
- Source :
- Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
- Publication Year :
- 2007
- Publisher :
- arXiv, 2007.
-
Abstract
- The modular vector field of a Poisson-Nijenhuis Lie algebroid $A$ is defined and we prove that, in case of non-degeneracy, this vector field defines a hierarchy of bi-Hamiltonian $A$-vector fields. This hierarchy covers an integrable hierarchy on the base manifold, which may not have a Poisson-Nijenhuis structure.<br />Comment: To appear in Letters in Mathematical Physics
- Subjects :
- Mathematics - Differential Geometry
Lie algebroid
Poisson-Nijenhuis structures
Pure mathematics
Integrable system
Structure (category theory)
FOS: Physical sciences
17B66
37J35
Modular vector fields
01 natural sciences
53D17
17B62
0103 physical sciences
FOS: Mathematics
0101 mathematics
Mathematics::Symplectic Geometry
Mathematical Physics
Mathematics
Hierarchy (mathematics)
business.industry
010102 general mathematics
Lie algebroids
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Modular design
Base (topology)
Manifold
Integrable hierarchies
Nonlinear Sciences::Exactly Solvable and Integrable Systems
Differential Geometry (math.DG)
Vector field
010307 mathematical physics
Mathematics::Differential Geometry
business
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
- Accession number :
- edsair.doi.dedup.....9c2765bbcc49e4817c24ba1ac9d3b1b9
- Full Text :
- https://doi.org/10.48550/arxiv.math/0701476