Back to Search Start Over

Comprehensive Modeling of U-Tube Steam Generators Using Extreme Learning Machines

Authors :
Kadir Kavaklioglu
Selami Beyhan
Source :
IEEE Transactions on Nuclear Science. 62:2245-2254
Publication Year :
2015
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2015.

Abstract

This paper proposes artificial neural network and fuzzy system-based extreme learning machines (ELM) for offline and online modeling of U-tube steam generators (UTSG). Water level of UTSG systems is predicted in a one-step-ahead fashion using nonlinear autoregressive with exogenous input (NARX) topology. Modeling data are generated using a well-known and widely accepted dynamic model reported in the literature. Model performances are analyzed with different number of neurons for the neural network and with different number of rules for the fuzzy system. UTSG models are built at different reactor power levels as well as full range that corresponds to all reactor operating powers. A quantitative comparison of the models are made using the root-mean-squared error (RMSE) and the minimum-descriptive-length (MDL) criteria. Furthermore, conventional back propagation learning-based neural and fuzzy models are also designed for comparing ELMs to classical artificial models. The advantages and disadvantages of the designed models are discussed. © 1963-2012 IEEE.

Details

ISSN :
15581578 and 00189499
Volume :
62
Database :
OpenAIRE
Journal :
IEEE Transactions on Nuclear Science
Accession number :
edsair.doi.dedup.....9b7c249d4fe800768560ab0438697266
Full Text :
https://doi.org/10.1109/tns.2015.2462126