Back to Search
Start Over
Spatial Patterns of ‘Ōhi‘a Mortality Associated with Rapid ‘Ōhi‘a Death and Ungulate Presence
- Source :
- Forests, Volume 12, Issue 8, Forests, Vol 12, Iss 1035, p 1035 (2021)
- Publication Year :
- 2021
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2021.
-
Abstract
- Effective forest management, particularly during forest disturbance events, requires timely and accurate monitoring information at appropriate spatial scales. In Hawai‘i, widespread ‘ōhi‘a (Metrosideros polymorpha Gaud.) mortality associated with introduced fungal pathogens affects forest stands across the archipelago, further impacting native ecosystems already under threat from invasive species. Here, we share results from an integrated monitoring program based on high resolution (&lt<br />5 cm) aerial imagery, field sampling, and confirmatory laboratory testing to detect and monitor ‘ōhi‘a mortality at the individual tree level across four representative sites on Hawai‘i island. We developed a custom imaging system for helicopter operations to map thousands of hectares (ha) per flight, a more useful scale than the ten to hundreds of ha typically covered using small, unoccupied aerial systems. Based on collected imagery, we developed a rating system of canopy condition to identify ‘ōhi‘a trees suspected of infection by the fungal pathogens responsible for rapid ‘ōhi‘a death (ROD)<br />we used this system to quickly generate and share suspect tree candidate locations with partner agencies to rapidly detect new mortality outbreaks and prioritize field sampling efforts. In three of the four sites, 98% of laboratory samples collected from suspect trees assigned a high confidence rating (n = 50) and 89% of those assigned a medium confidence rating (n = 117) returned positive detections for the fungal pathogens responsible for ROD. The fourth site, which has a history of unexplained ‘ōhi‘a mortality, exhibited much lower positive detection rates: only 6% of sampled trees assigned a high confidence rating (n = 16) and 0% of the sampled suspect trees assigned a medium confidence rating (n = 20) were found to be positive for the pathogen. The disparity in positive detection rates across study sites illustrates challenges to definitively determine the cause of ‘ōhi‘a mortality from aerial imagery alone. Spatial patterns of ROD-associated ‘ōhi‘a mortality were strongly affected by ungulate presence or absence as measured by the density of suspected ROD trees in fenced (i.e., ungulate-free) and unfenced (i.e., ungulate present) areas. Suspected ROD tree densities in neighboring areas containing ungulates were two to 69 times greater than those found in ungulate-free zones. In one study site, a fence line breach occurred during the study period, and feral ungulates entered an area that was previously ungulate-free. Following the breach, suspect ROD tree densities in this area rose from 0.02 to 2.78 suspect trees/ha, highlighting the need for ungulate control to protect ‘ōhi‘a stands from Ceratocystis-induced mortality and repeat monitoring to detect forest changes and resource threats.
- Subjects :
- Canopy
Ungulate
010504 meteorology & atmospheric sciences
Forest management
0211 other engineering and technologies
02 engineering and technology
Metrosideros polymorpha
01 natural sciences
Invasive species
remote sensing
Hawai‘i
QK900-989
Plant ecology
021101 geological & geomatics engineering
0105 earth and related environmental sciences
helicopter
biology
Ceratocystis lukuohia
Outbreak
Forestry
15. Life on land
biology.organism_classification
visible imagery
Geography
Disturbance (ecology)
Spatial ecology
Subjects
Details
- Language :
- English
- ISSN :
- 19994907
- Database :
- OpenAIRE
- Journal :
- Forests
- Accession number :
- edsair.doi.dedup.....9b6e1fb9752530fe97fb88c7556f337d
- Full Text :
- https://doi.org/10.3390/f12081035