Back to Search Start Over

OXSR1 inhibits inflammasome activation by limiting potassium efflux during mycobacterial infection

Authors :
Elinor Hortle
Vi LT Tran
Kathryn Wright
Angela RM Fontaine
Natalia Pinello
Matthew B O’Rourke
Justin J-L Wong
Philip M Hansbro
Warwick J Britton
Stefan H Oehlers
Publication Year :
2022
Publisher :
LIFE SCIENCE ALLIANCE LLC, 2022.

Abstract

Pathogenic mycobacteria inhibit inflammasome activation to establish infection. Although it is known that potassium efflux is a trigger for inflammasome activation, the interaction between mycobacterial infection, potassium efflux, and inflammasome activation has not been investigated. Here, we use Mycobacterium marinum infection of zebrafish embryos and Mycobacterium tuberculosis infection of THP-1 cells to demonstrate that pathogenic mycobacteria up-regulate the host WNK signalling pathway kinases SPAK and OXSR1 which control intracellular potassium balance. We show that genetic depletion or inhibition of OXSR1 decreases bacterial burden and intracellular potassium levels. The protective effects of OXSR1 depletion are at least partially mediated by NLRP3 inflammasome activation, caspase-mediated release of IL-1β, and downstream activation of protective TNF-α. The elucidation of this druggable pathway to potentiate inflammasome activation provides a new avenue for the development of host-directed therapies against intracellular infections.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....9b2d21d783a7bf9d3ed4aa37d022a788