Back to Search Start Over

Smart Hypothesis Generation for Efficient and Robust Room Layout Estimation

Authors :
Vincent Lepetit
Peter M. Roth
Martin Hirzer
Source :
WACV
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

We propose a novel method to efficiently estimate the spatial layout of a room from a single monocular RGB image. As existing approaches based on low-level feature extraction, followed by a vanishing point estimation are very slow and often unreliable in realistic scenarios, we build on semantic segmentation of the input image. To obtain better segmentations, we introduce a robust, accurate and very efficient hypothesize-and-test scheme. The key idea is to use three segmentation hypotheses, each based on a different number of visible walls. For each hypothesis, we predict the image locations of the room corners and select the hypothesis for which the layout estimated from the room corners is consistent with the segmentation. We demonstrate the efficiency and robustness of our method on three challenging benchmark datasets, where we significantly outperform the state-of-the-art.<br />Accepted: Winter Conference on Applications of Computer Vision (WACV) 2020

Details

Database :
OpenAIRE
Journal :
2020 IEEE Winter Conference on Applications of Computer Vision (WACV)
Accession number :
edsair.doi.dedup.....9b25d50f8d234b6e90d0687de0d6b02e