Back to Search Start Over

A Block-Coordinate Approach of Multi-level Optimization with an Application to Physics-Informed Neural Networks

Authors :
Gratton, Serge
Mercier, Valentin
Riccietti, Elisa
Toint, Philippe L.
Algorithmes Parallèles et Optimisation (IRIT-APO)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI)
Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Laboratoire de l'Informatique du Parallélisme (LIP)
École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
Namur Center for Complex Systems [Namur] (NaXys)
Université de Namur [Namur] (UNamur)
ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019)
Institut National Polytechnique (Toulouse) (Toulouse INP)
Optimisation, Connaissances pHysiques, Algorithmes et Modèles (OCKHAM)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut Rhône-Alpin des systèmes complexes (IXXI)
École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Inria Lyon
Institut National de Recherche en Informatique et en Automatique (Inria)
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

Multi-level methods are widely used for the solution of large-scale problems, because of their computational advantages and exploitation of the complementarity between the involved sub-problems. After a re-interpretation of multi-level methods from a block-coordinate point of view, we propose a multi-level algorithm for the solution of nonlinear optimization problems and analyze its evaluation complexity. We apply it to the solution of partial differential equations using physics-informed neural networks (PINNs) and show on a few test problems that the approach results in better solutions and significant computational savings.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....9ab6a7bce6a8b81111a59945a24c143c