Back to Search Start Over

Colloidal crystal engineering with metal–organic framework nanoparticles and DNA

Authors :
Chad A. Mirkin
Omar K. Farha
Cassandra T. Buru
Haixin Lin
Peng-Cheng Chen
Shunzhi Wang
Sarah S. Park
Eric W. Roth
Source :
Nature Communications, Vol 11, Iss 1, Pp 1-8 (2020), Nature Communications
Publication Year :
2020
Publisher :
Nature Portfolio, 2020.

Abstract

Colloidal crystal engineering with nucleic acid-modified nanoparticles is a powerful way for preparing 3D superlattices, which may be useful in many areas, including catalysis, sensing, and photonics. To date, the building blocks studied have been primarily based upon metals, metal oxides, chalcogenide semiconductors, and proteins. Here, we show that metal–organic framework nanoparticles (MOF NPs) densely functionalized with oligonucleotides can be programmed to crystallize into a diverse set of superlattices with well-defined crystal symmetries and compositions. Electron microscopy and small-angle X-ray scattering characterization confirm the formation of single-component MOF superlattices, binary MOF–Au single crystals, and two-dimensional MOF nanorod assemblies. Importantly, DNA-modified porphyrinic MOF nanorods (PCN-222) were assembled into 2D superlattices and found to be catalytically active for the photooxidation of 2-chloroethyl ethyl sulfide (CEES, a chemical warfare simulant of mustard gas). Taken together, these new materials and methods provide access to colloidal crystals that incorporate particles with the well-established designer properties of MOFs and, therefore, increase the scope of possibilities for colloidal crystal engineering with DNA.<br />Colloidal crystals assembled from nanoscale building blocks are powerful designer materials with diverse functionalities. Here, the authors describe a colloidal crystal engineering strategy to prepare hierarchical structures from metal–organic framework nanoparticles and DNA which retain permanent porosity and catalytic activity.

Details

Language :
English
ISSN :
20411723
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....9a81bb8d6027a4a7a7a3be54b332e5bd