Back to Search Start Over

Studies of Catalyst-Controlled Regioselective Acetalization and Its Application to Single-Pot Synthesis of Differentially Protected Saccharides

Authors :
Enoch Mensah
Oleksii Zhelavskyi
Pavel Nagorny
Jeonghyo Lee
Paul M. Zimmerman
Sibin Wang
Hao Guo
Rami Hourani
Yaroslav Khomutnyk
Alonso J. Arguelles
Source :
J Am Chem Soc
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

This article describes the studies on regioselective acetal protection of monosaccharide-based diols using chiral phos-phoric acids (CPAs) and their immobilized polymeric variants, (R)-Ad-TRIP-PS and (S)-SPINOL-PS as the catalysts. These catalyst-controlled regioselective acetalizations were found to proceed with high regioselectivities (up to >25:1 rr) on various D-glucose, D-galactose, D-mannose and L-fucose derived 1,2-diols, and could be carried in a re-giodivergent fashion depending on the choice of the chiral catalyst. The polymeric catalysts were conveniently recy-cled and reused multiple times for gram scale functionalizations with catalytic loading as low as 0.1 mol%, and their performance was often found to be superior to the performance of their monomeric variants. These regioselective CPA-catalyzed acetalizations were successfully combined with common hydroxyl group functionalizations as single-pot telescoped procedures to produce 34 regioisomerically pure differentially protected mono- and disaccharide de-rivatives. To further demonstrate the utility of the polymeric catalysts, the same batch of (R)-Ad-TRIP-PS catalyst was recycled and reused to accomplish single-pot gram-scale syntheses of 6 differentially protected D-glucose derivatives. The subsequent exploration of the reaction mechanism using NMR studies of deuterated and nondeuterated sub-strates revealed that low-temperature acetalizations happen via syn-addition mechanism, and that the reaction regi-oselectivity exhibits strong dependence on the temperature. The computational studies indicate complex tempera-ture-dependent interplay of two reaction mechanisms, one involving an anomeric phosphate intermediate and an-other via concerted asynchronous formation of acetal that results in syn-addition products. The computational models also explain the steric factors responsible for the observed C2-selectivities and are consistent with experimentally observed selectivity trends.

Details

ISSN :
15205126 and 00027863
Volume :
143
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....9a66cb5e2e5cee071ab23c7b0ae67773
Full Text :
https://doi.org/10.1021/jacs.1c08448