Back to Search Start Over

Asymptotic analysis of the steady Stokes equation with randomly perturbed viscosity in a thin tube structure

Authors :
L. Carraro
Grigory Panasenko
G. R. Fares
Giuseppe Cardone
Cardone, G
Carraro, L
Fares, R
Panasenko, Gp
Dipartimento di Ingegneria [Benevento]
Università degli Studi del Sannio
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Panasenko, Grigory
Source :
Journal of Mathematical Sciences, Journal of Mathematical Sciences, Springer Verlag (Germany), 2011, 176 (6), pp.797-817
Publication Year :
2011

Abstract

The Stokes equation with the nonconstant viscosity is considered in a thin tube structure, i.e., in a connected union of thin rectangles with heights of order e ≪ 1 and bases of order 1 with smoothened boundary. An asymptotic expansion of the solution is constructed. In the case of random perturbations of the constant viscosity, we prove that the leading term for the velocity is deterministic, while for the pressure it is random, but the expectations of the pressure satisfies the deterministic Darcy equation. Estimates for the difference between the exact solution and its asymptotic approximation are proved. Bibliography: 11 titles. Illustrations: 3 figures.

Details

Language :
English
ISSN :
10723374 and 15738795
Database :
OpenAIRE
Journal :
Journal of Mathematical Sciences, Journal of Mathematical Sciences, Springer Verlag (Germany), 2011, 176 (6), pp.797-817
Accession number :
edsair.doi.dedup.....9a62d598d64af009f40329e988405c26