Back to Search Start Over

Wild-type GBA1 increases the α-synuclein tetramer-monomer ratio, reduces lipid-rich aggregates, and attenuates motor and cognitive deficits in mice

Authors :
Thomas D McCaffery
Silke Nuber
Warren D. Hirst
Alice Y Nam
Tim Moors
Dennis J. Selkoe
Andreas Weihofen
Kelly E. Glajch
Yi Chen
Ulf Dettmer
Molly M Rajsombath
Pascal A Bechade
Source :
Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2021

Abstract

Significance The mechanisms responsible for brain α-synuclein (αS) dyshomeostasis, caused by Gaucher’s GBA1 mutations that increase Parkinson’s disease (PD) risk, are largely unknown. We previously showed that abrogating physiological αS tetramers by a familial PD-E46K–amplified 3K mutation produces PD-like syndrome in mice and that treatment with stearoyl-CoA desaturase inhibitors increased a portion of the αS tetramers, benefitting the motor phenotypes. Here, we show that—similar to previous findings in GBA1-mutant PD culture—GCase elevation prolonged the stabilization of wild-type and 3K mutant αS tetramers in wtGBA1–transduced mouse brains, improving lysosomal integrity and motor and cognitive phenotypes. These data help elucidating lipid modulators that impact the αS physiological state in vivo and the development of PD therapeutic approaches.<br />Loss-of-function mutations in acid beta-glucosidase 1 (GBA1) are among the strongest genetic risk factors for Lewy body disorders such as Parkinson’s disease (PD) and Lewy body dementia (DLB). Altered lipid metabolism in PD patient–derived neurons, carrying either GBA1 or PD αS mutations, can shift the physiological α-synuclein (αS) tetramer–monomer (T:M) equilibrium toward aggregation-prone monomers. A resultant increase in pSer129+ αS monomers provides a likely building block for αS aggregates. 3K αS mice, representing a neuropathological amplification of the E46K PD–causing mutation, have decreased αS T:M ratios and vesicle-rich αS+ aggregates in neurons, accompanied by a striking PD-like motor syndrome. We asked whether enhancing glucocerebrosidase (GCase) expression could benefit αS dyshomeostasis by delivering an adeno-associated virus (AAV)–human wild-type (wt) GBA1 vector into the brains of 3K neonates. Intracerebroventricular AAV-wtGBA1 at postnatal day 1 resulted in prominent forebrain neuronal GCase expression, sustained through 6 mo. GBA1 attenuated behavioral deficits both in working memory and fine motor performance tasks. Furthermore, wtGBA1 increased αS solubility and the T:M ratio in both 3K-GBA mice and control littermates and reduced pS129+ and lipid-rich aggregates in 3K-GBA. We observed GCase distribution in more finely dispersed lysosomes, in which there was increased GCase activity, lysosomal cathepsin D and B maturation, decreased perilipin-stabilized lipid droplets, and a normalized TFEB translocation to the nucleus, all indicative of improved lysosomal function and lipid turnover. Therefore, a prolonged increase of the αS T:M ratio by elevating GCase activity reduced the lipid- and vesicle-rich aggregates and ameliorated PD-like phenotypes in mice, further supporting lipid modulating therapies in PD.

Details

ISSN :
10916490
Volume :
118
Issue :
31
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Accession number :
edsair.doi.dedup.....99fa12f9336821ebecf68270d274c6b0