Back to Search Start Over

Review: To be or not to be an identifiable model. Is this a relevant question in animal science modelling?

Authors :
Rafael Muñoz-Tamayo
Jean-Baptiste Daniel
P. Blavy
Olivier C. Martin
Laurence Puillet
Masoomeh Taghipoor
D. Sauvant
Modélisation Systémique Appliquée aux Ruminants (MoSAR)
Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Trouw Nutrition R&D
Département PEGASE [LBBE] (PEGASE)
Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
Source :
animal, animal, Published by Elsevier (since 2021) / Cambridge University Press (until 2020), 2018, 12 (04), pp.701-712. ⟨10.1017/S1751731117002774⟩, Animal, Vol 12, Iss 4, Pp 701-712 (2018), Animal, Animal, 2018, 12 (04), pp.701-712. ⟨10.1017/S1751731117002774⟩, animal, Cambridge University Press (CUP), 2018, 12 (04), pp.701-712. ⟨10.1017/S1751731117002774⟩, Animal, Published by Elsevier (since 2021) / Cambridge University Press (until 2020), 2018, 12 (04), pp.701-712. ⟨10.1017/S1751731117002774⟩, Animal 4 (12), 701-712. (2018)
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs (stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by ordinary differential equations (ODEs) is a common practice in control engineering and system identification. This analysis demands mathematical technicalities that are beyond the academic background of animal science, which might explain the lack of pervasiveness of identifiability analysis in animal science modelling. To fill this gap, in this paper we address the analysis of structural identifiability from a practitioner perspective by capitalizing on the use of dedicated software tools. Our objectives are (i) to provide a comprehensive explanation of the structural identifiability notion for the community of animal science modelling, (ii) to assess the relevance of identifiability analysis in animal science modelling and (iii) to motivate the community to use identifiability analysis in the modelling practice (when the identifiability question is relevant). We focus our study on ODE models. By using illustrative examples that include published mathematical models describing lactation in cattle, we show how structural identifiability analysis can contribute to advancing mathematical modelling in animal science towards the production of useful models and, moreover, highly informative experiments via optimal experiment design. Rather than attempting to impose a systematic identifiability analysis to the modelling community during model developments, we wish to open a window towards the discovery of a powerful tool for model construction and experiment design.

Details

ISSN :
17517311 and 1751732X
Volume :
12
Database :
OpenAIRE
Journal :
Animal
Accession number :
edsair.doi.dedup.....99bd7c9936a98dbc3a1b7a859aad2c79
Full Text :
https://doi.org/10.1017/s1751731117002774