Back to Search Start Over

Stacked-graphene layers as engineered solid-electrolyte interphase (SEI) grown by chemical vapour deposition for lithium-ion batteries

Authors :
Matthew R. Leyden
Luis K. Ono
Taehoon Kim
Yabing Qi
Source :
Carbon. 132:678-690
Publication Year :
2018
Publisher :
Elsevier, 2018.

Abstract

A multi-layer of stacked-graphene (8 layers of basal planes) grown by chemical vapour deposition (CVD) is introduced as an artificial solid electrolyte interphase (SEI) layer onto a transition metal oxide cathode for lithium-ion batteries. The basal planes are generally regarded as a strong physical barrier that prevents lithium-ion diffusion, although it is believed that a small number of lithium-ions can migrate through the defect sites of the stacked layers. Interestingly, the unique design of the stacked-graphene perpendicular to the basal planes not only effectively suppresses the formation of instable SEI layers, but also achieves a reasonable amount of battery charge capacities. To correctly understand the impact from the stacked design, we further studied the rate kinetics difference between slow cycles (0.125 C→0.250 C→0.400 C→0.125 C) and rapid cycles (C→2 C→3 C→C). We propose that the clap-net like design of the stacked-graphene could enable the effective conducting pathway for electron transport, while protecting the active material inside. The magnetic measurements reveal the efficient Li+ (de)intercalation into graphene-layers. The artificial SEI also renders the electrode/electrolyte interface more stable against dynamic rate changes. The present approach provides a particular advantage in developing high stability battery that can be utilized at various charge rates.

Details

Language :
English
ISSN :
00086223
Volume :
132
Database :
OpenAIRE
Journal :
Carbon
Accession number :
edsair.doi.dedup.....997843f032adb52629c52d535cf6a6e7