Back to Search
Start Over
USING SEMANTICALLY PAIRED IMAGES TO IMPROVE DOMAIN ADAPTATION FOR THE SEMANTIC SEGMENTATION OF AERIAL IMAGES
- Source :
- XXIV ISPRS Congress, Commission II : edition 2020, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; 5,2, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol V-2-2020, Pp 483-492 (2020)
- Publication Year :
- 2020
-
Abstract
- Modern machine learning, especially deep learning, which is used in a variety of applications, requires a lot of labelled data for model training. Having an insufficient amount of training examples leads to models which do not generalize well to new input instances. This is a particular significant problem for tasks involving aerial images: often training data is only available for a limited geographical area and a narrow time window, thus leading to models which perform poorly in different regions, at different times of day, or during different seasons. Domain adaptation can mitigate this issue by using labelled source domain training examples and unlabeled target domain images to train a model which performs well on both domains. Modern adversarial domain adaptation approaches use unpaired data. We propose using pairs of semantically similar images, i.e., whose segmentations are accurate predictions of each other, for improved model performance. In this paper we show that, as an upper limit based on ground truth, using semantically paired aerial images during training almost always increases model performance with an average improvement of 4.2% accuracy and .036 mean intersection-over-union (mIoU). Using a practical estimate of semantic similarity, we still achieve improvements in more than half of all cases, with average improvements of 2.5% accuracy and .017 mIoU in those cases.
- Subjects :
- lcsh:Applied optics. Photonics
Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaften
Computer science
domain adaptation
0211 other engineering and technologies
02 engineering and technology
transfer learning
lcsh:Technology
Domain (software engineering)
Semantic similarity
0202 electrical engineering, electronic engineering, information engineering
ddc:550
Segmentation
Limit (mathematics)
Konferenzschrift
021101 geological & geomatics engineering
Ground truth
Artificial neural network
lcsh:T
business.industry
Deep learning
lcsh:TA1501-1820
deep learning
Pattern recognition
aerial images
neural networks
semantic segmentation
lcsh:TA1-2040
020201 artificial intelligence & image processing
Artificial intelligence
lcsh:Engineering (General). Civil engineering (General)
Transfer of learning
business
Subjects
Details
- Language :
- English
- ISSN :
- 21949050
- Database :
- OpenAIRE
- Journal :
- XXIV ISPRS Congress, Commission II : edition 2020, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; 5,2, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol V-2-2020, Pp 483-492 (2020)
- Accession number :
- edsair.doi.dedup.....99750a9917060095e3bccc23a86e3e56